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Nomenclature

(1, σ1, σ2, σ3, i, iσ1, iσ2, iσ3) basis of Cl3, page 48

(D0, D1, D2, D3) mobile basis, page 45

(a)n (a)0 = 1 (a)1 = a, (a)n = a(a + 1) . . . (a + n − 1), see equa-
tion (C.58)

(r, θ, φ) spherical coordinates, see equation (C.1)

(V1, V2, V3, V4) canonical basis in M2(C), see equation (1.5)

α = e2

ℏc fine structure constant, see equation (C.21)

β Yvon-Takabayasi angle, see equation (1.89)

Γα
βγ Christoffel symbols (from contravariance), see equation (4.76)

D Invariant derivative, see equation (4.98)

□ = (∂0)
2 − (∂1)

2 − (∂2)
2 − (∂3)

2 D’Alembertian, see equation (A.47)

∆ = (∂1)
2 + (∂2)

2 + (∂3)
2 Laplacian operator, see equation (A.37)

ϵ = E
m reduced mass-energy, see equation (C.62)

η left wave, see equation (1.3)

η1 left wave of the electron, page 54
m
klL

1 + m
krL

2 + m
kml

L3 + m
kmr

L4 Lagrangian density, page 118

Γβ
µν Christoffel symbols (from covariance), see equation (4.18)

γj = −γj =
(
0 −σj
σj 0

)
Dirac matrices (j = 1, 2, 3), see equation (B.8)

γ0 = γ0 =

(
0 I
I 0

)
Dirac matrices (our choice), see equation (B.8)

Γ4 = iL4 , see equation (B.54)

Γ5 = −iL5 , see equation (B.54)

Γµ = Lµ µ = 0, 1, 2, 3 , see equation (B.54)
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κ constant (nonzero integer number), see equation (C.38)

λ magnetic quantum number, see equation (C.44)

Λn, n = 1, ..., 8 generator of the SU(3)c group, see equation (3.45)

R field of real numbers, page 30

C field of complex numbers, page 30

A := γµA
µ electromagnetic potential (in space-time algebra), see equation (B.15)

F =

(
F 0

0 F̂

)
electromagnetic field (in space-time algebra), see equation (B.16)

i = γ0123 = γ0γ1γ2γ3 = iγ5 , see equation (B.52)

l left mass term, see equation (1.147)

m =

(
l 0
0 r

)
matrix mass term, see equation (1.147)

n principal quantum number, page 64

n = |κ|+ n (n: degree of radial polynomial functions), page 65

r right mass term, see equation (1.147)

F(R4,C) set of all ψ (wave functions), page 24

F(R4,C4) set of all ψ (Dirac wave functions), page 25

G group of 2× 2 complex matrices M such as |det(M)| = 1, see equa-
tion (1.39)

L Lagrangian density, see equation (1.133)

L↑
+ restricted Lorentz group, page 34

L+
q ; L−

q Lagrangian densities (quarks), see equation (3.133)

b; wj ; hkj potential space-time vectors, see equation (3.87)

D0 = J probability current, see equation (1.93)

D1 = ϕσ1ϕ
† first new current, see equation (1.93)

D2 = ϕσ2ϕ
† second new current, see equation (1.93)

D3 = K second current, see equation (1.93)

D1
L = L1L̃1 left current, see equation (1.103)

D8
L := L̃8L8 current of the left neutrino-monopole, page 91

D1
R = R1R̃1 right current, page 44

D8
R := R̃8R8 current of the right neutrino-monopole, page 91
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j electric current (space-time vector), see equation (A.58)

J = Jµσµ probability current, page 41

Jµ = ψγµψ densities, components of J, page 41

k magnetic current (space-time vector), page 223

Kµ = ψγµγ5ψ components of the K current, see equation (1.87)

Kl left minus right current, see equation (4.177)

v = 1
ρJ reduced velocity, see equation (1.164)

x = xµσµ general element in space-time, see equation (A.43)

∇ = ∂0 − ∂⃗ first differential operator in space-time, see equation (A.46)

ν = E/h frequency, see equation (1.205)

Ω = r−1(sin θ)−
1
2S dilator, see equation (C.3)

Ω1 = ψψ relativistic invariant, page 41

Ω2 = −iψγ5ψ second relativistic invariant, see equation (1.88)

ψ = ψ†γ0 Dirac conjugate, page 41

A = Â† A bar, see equation (A.32)

∂µ = ∂
∂xµ partial derivative, see equation (1.10)

ϕ =
√
2

(
ξ11 −η1∗2
ξ12 η1∗1

)
wave of the electron, page 38

ϕp = −ϕeσ1 wave of the positron (in Cl3), page 61

∂∂∂ = γµ∂µ Dirac differential operator, see equation (B.9)

∂∂∂ν = ∂
∂Xν = Dµ

ν∂µ Dirac operator, see equation (4.18)

Ψ : ϕ 7→ ϕe wave with value: operator on Cl3, see equation (2.1)

ψ = ψ(x, y, z, t) wave function (function of space and time with complex
value), see equation (1.1)

Ψb wave d(blue)+ u(blue), see equation (2.6)

Ψg wave d(green)+ u(green), see equation (2.6)

Ψl wave electron + neutrino-monopole, see equation (2.6)

ΨL = Ψ1
L +Ψ8

L left part of the lepton wave, page 104

ψp Dirac wave of the positron, see equation (1.140)

Ψq =

(
iΨb Ψr +Ψg

Ψr −Ψg −iΨb

)
quark wave, see equation (3.3)

Ψr wave d(rot)+ u(rot), see equation (2.6)
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ρ main relativistic invariant, see equation (1.91)

ρl generalization of ρ in the lepton case, see equation (2.26)

σµ Pauli matrices, see equation (1.4)

σ21 = σ2σ1 is a 2-vector in Cl3, page 39

θW Weinberg–Salam angle, see equation (2.201)

D gauge-invariant derivative, see equation (3.50)

J := m
l D

1
L + m

r D
1
R barycentric current, see equation (1.302)

∂⃗′ (= σ3∂r +
1
rσ1∂θ +

1
r sin θσ2∂φ), see equation (C.3)

∂⃗ =

(
∂3 ∂1 − i∂2

∂1 + i∂2 −∂3

)
main differential operator in Cl3, see equation (A.35)

∂⃗ · u⃗ divergence of u⃗, see equation (A.39)

∂⃗ × u⃗ rotational of u⃗, see equation (A.39)

u⃗ · v⃗ scalar product, see equation (A.2)

u⃗× v⃗ vector product (or cross product), page 217

⃗grad a = ∂⃗a gradient of the scalar a, see equation (A.39)

E⃗ electric field, page 221

H⃗ magnetic field, page 221

∇̂ = ∂0 + ∂⃗ second differential operator in space-time, see equation (A.46)

Â = A1 −A2 A hat, see equation (A.30)

L̃3+n = ϕ̃3+n 1−σ3

2 n = 2, 3, 4, see equation (3.8)

R̃3+n = ϕ̃3+n 1+σ3

2 n = 2, 3, 4, see equation (3.8)

ξ right wave, see equation (1.3)

ξ1 right wave of the electron, page 54

A 7→ Ã reversion, see equation (A.9)

A, B, C, D functions of r (radial variable), see equation (C.37)

A† = (A∗)t adjoint(conjugate transposed), see equation (A.29)

A1 = a+ iv⃗ even part of A = a+ u⃗+ iv⃗ + ib, page 219

A2 = u⃗+ ib odd part of A = a+ u⃗+ iv⃗ + ib, page 219

an, n = 1, 2, ..., 6 invariant densities, see equation (2.23)

B chiral potential (space-time vector), page 223
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Cµν curvature field, see equation (4.176)

Cl2 Clifford algebra of the Euclidean plane, page 215

Cl3 Clifford algebra of 3-dimensional space, page 216

Cl∗3 group of invertible elements in Cl3, page 30

Cl+3 even sub-algebra of Cl3 (quaternion field), page 217

Cl1,3 space-time algebra, see equation (B.3)

Cl+1,3 even space-time subalgebra, see equation (B.6)

d := l−r
2 mass difference, page 51

D∗ group of similitudes R, page 32

Dx : X 7→ x = ϕXϕ† induced similitude, see equation (1.279)

dLµ := −i∂µ + qAµ + lvµ covariant derivative (left wave), see equation (1.198)

dRµ := −i∂µ + qAµ + rvµ covariant derivative (right wave), see equation (1.198)

f :M 7→ R homomorphism: dilator 7→ similitude, page 157

F = E⃗ + iH⃗ electromagnetic field, page 221

Fµν := ∂µAν − ∂νAµ electromagnetic field, see equation (1.300)

Gµν := ∂µvν − ∂νvµ gravitational field, see equation (1.300)

GL(2,C) = Cl∗3 group of endomorphisms on C2, page 35

H Hamiltonian, see equation (1.1)

i = σ1σ2σ3 is a 3-vector in Cl3, page 39

i1 = σ23 (i21 = −1), see equation (C.3)

i2 = σ31 (i22 = −1), see equation (C.3)

i3 = σ12 (i23 = −1), see equation (C.3)

j kinetic momentum number (J2ϕ = j(j + 1)ϕ)), see equation (C.45)

J2 = J2
1 + J2

2 + J2
3 kinetic momentum operator, see equation (C.43)

J3 kinetic momentum operator, see equation (C.42)

Jl = D1
R +D1

L +D8
R +D8

L lepton current, see equation (2.20)

k = 1.140815(25)× 10−80s2kg−1 (constant), see equation (1.344)

L1 =
√
2

(
η11 0
η12 0

)
left part of the ϕ wave, page 38

L8 left wave of the neutrino-monopole, page 90

Ln = ϕn 1−σ3

2 n = 2, 3, 4, see equation (3.8)
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L4 =

(
0 −I4
I4 0

)
, see equation (B.51)

L5 =

(
0 i
i 0

)
, see equation (B.51)

Lµ =

(
0 γµ
γµ 0

)
(µ = 0, 1, 2, 3), see equation (B.51)

la = 1.38068(3)× 10−36m absolute length, see equation (1.344)

m := m0c
ℏ m0 is the proper mass, see equation (1.2)

M dilator (general element in Cl3), page 31

Mϕ SL(2,C) part of the electron wave, see equation (1.157)

ma := l+r
2 arithmetic mean , see equation (1.155)

mg =
√
lr geometric mean, see equation (1.180)

Mn(C) set of n× n complex matrices

mabs = 1.85921(4)× 10−9kg absolute mass, see equation (1.344)

N = s+ v +B + pv + ps general element in space-time algebra, see equa-
tion (B.3)

P : A 7→ Â parity transformation, see equation (A.30)

P :M 7→ M̂ main automorphism in Cl3 (parity), page 39

P+, P− projectors, see equation (2.43)

Pµ, µ = 0, 1, 2, 3 projectors, see equation (2.47)

r ratio of the similitude R, page 31

R : x 7→ x′ =MxM† similitude, page 31

R1 =
√
2

(
ξ11 0
ξ12 0

)
right part of the ϕ wave, page 38

R8 right wave of the neutrino-monopole, page 90

Rn = ϕn 1+σ3

2 n = 2, 3, 4, see equation (3.8)

Rµ
ν real 4× 4 matrix of the similitude R, page 32

S = e−
φ
2 i3e−

θ
2 i2 rotator, see equation (C.3)

Sµν = iψγµγνψ electric-magnetic momentum densities, see equation (1.86)

S0 = ϕσ0ϕ also equals to a1 and to ρeiβ , see equation (1.101)

S3 = ϕσ3ϕ space-time 2-vector (6 densities), see equation (1.99)

Sµ = ϕσµϕ (20 densities: 8 old, 12 new), page 43
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SL(2,C) group of 2× 2 M matrices such as det(M) = 1, page 30

SO(3) group of rotations in 3-dimensional space, page 30

SU(2) subgroup of unitary elements in SL(2,C), page 30

T ; Tnµ
Lλ Tnµ

Rλ T
3+nµ
Lλ T 3+nµ

Rλ energy–momentum tensors (quarks), see equa-
tion (3.150)

Tµ
ν energy–momentum tensor density (Tetrode’s tensor), see equation (1.200)

ta = 4.60545(10)× 10−45s absolute duration, see equation (1.344)

U(1)× SU(2) electroweak gauge group, page 89

U, V functions of θ, see equation (C.37)

V µ
λ non-interpreted tensor of O. Costa de Beauregard, page 118

Xµ non Lagrangian term, see equation (4.135)

Yµ Lagrangian term, see equation (4.135)

Z ′0 := Z0
√
3

boson Z ′0, see equation (2.214)
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Introduction

During the last century, gravitation has been understood as space-time
curvature thanks to general relativity (GR), mainly developed by Einstein.
Quantum physics has been built as a theory of gauge invariant fields, known
as the Standard Model (SM) of quantum physics. However, the aim of all
theoretical physics, a true unification of these separated parts of physics,
the “Theory of Everything,” has not yet been achieved. This ToE is also the
end goal of our work.

Many attempts have been made in recent decades, usually beginning
with quantum physics and aiming to include gravitation. “Developing the
Theory of Everything” also starts from quantum mechanics, but in an en-
tirely new way using a fully relativistic formulation of quantum mechanics,
as explained in Chapter 1. This new approach allows us to understand
the true reason for the quantization of action, as well as the true nature
of light and the electromagnetic field, which turns out to be simply the
momentum–energy of the quantum wave. Novelties also arise here from
the same minimal mathematical tools used for both SM and GR: the Cl3
algebra described in Appendix A and the End(Cl3) algebra in Appendix B.
The necessity for this tool in GR comes from Whitney’s theorem: space-time
being a 4-dimensional manifold, an 8-dimensional linear space is sufficient
to obtain an embedding, and moreover Cl3 is R8 as linear space and as
topological space.

The use of these algebras in physics began as early as 1927 with the
Pauli algebra, which is Cl3, and then with the Dirac algebra in 1928 in
the frame of what is now known as “first quantization.” This step has
been followed by a second one, “field quantization” (electromagnetic field,
boson fields of electroweak and strong interactions). Half a century ago,
D. Hestenes rebuilt first quantization with the mathematical tool of space-
time algebra [73, 74, 75, 76, 78, 79]. We first began our research [12] in this
framework, but since then have introduced further developments: First, the
main novelty has been the use of an improved wave equation which Chapter
1 explains. Second, the natural geometric framework of Dirac theory is
not space-time algebra, but rather the Cl3 algebra. This was not thought
possible before our work [15, 16, 18, 19, 20, 21]. This algebra, first promoted
by W. Baylis [3], is isomorphic to the even part of Hestenes’ Cl1,3 algebra.
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This restricted framework allowed us to see the Dirac theory as incomplete:
many more tensor densities are available, respecting the relativistic link
between spinors and tensors. Third, it was necessary to understand the
Cl∗3 Lie group as the invariance group of all laws of electromagnetism, the
quantum wave of the electron included [18, 20, 21, 22, 23].

These three steps have allowed us to build a completely relativistic the-
ory of electroweak interactions, generalizing our improved Dirac equation.
This wave equation uses proper mass terms: we are able to do precisely what
was impossible in the first theory of weak interactions [107]. The improved
equation is generalized to a wave equation for all fermions and antifermions
of the first generation [25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 45,
46, 47, 50]. Explaining our previous steps in [47] we obtained new results,
like the Lorentz force acting on the whole lepton wave (magnetic monopole
included). We also obtained an equation for the complete wave of colored
quarks. Our wave equations give a reduced velocity vector for the probabil-
ity current. This allows us to partially mask the crossing between right and
left spinors in proper mass terms. Consequently we were able to express the
wave equations in a recursive manner that gives the gauge field’s properties.
And above all we obtained the quantization of kinetic momentum 1

with the expected ℏ/2 value, both for the electron, the proton and the neu-
tron with their three colored quarks. We also explained the double logical
link between the Lagrangian density and the wave equation.

About quarks which make up protons and neutrons of the atomic nucleus
we must recall this: the charge of quarks (+2/3 of the positron charge for the
u quark and −1/3 of the positron charge for the d quark) is measured with
extraordinary precision. This is undoubtedly the best experimental result
in all physics: if there should be but a tiny departure from these values,
a non-ionized atom could not be neutral and electrostatic forces between
atoms should be much stronger than gravitational forces. Matter could not
then build stars and planets. It is thus very important to satisfy these
+2/3 and −1/3 values and this will be thoroughly explained in the book.
The Standard Model such as described here does not need to assign charge
values: these values are the mere consequence of constraints imposed by
relativistic and gauge invariance. About quarks, the Standard Model tells
us several properties that must be explained. First, there is the existence
of three and only three color states for each quark – we explain these three.
Second, fermions also exist in three “generations” that are very similar:
Here as well our explanation is simple, as these three also come from the
dimension of space. Thus we do not expect a fourth generation, except for
a fourth neutrino, and we explain why. This fourth neutrino may be stable
and identical to its antiparticle.

Numerous attempts at unification were made by extending the restricted

1. The use of the word "kinetic" when English language expects "angular" does not
come from an error of translation; it is the correction of an unfortunate linguistic defi-
ciency (explained in 1.1.2).
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framework of the Minkowski space-time and expressing the Dirac equation in
curved space-time. This is today considered a completely solved problem,
both via the older formalism with the Dirac matrices and via the space-
time algebra used by Hestenes and his Cliffordian school [5][6][9][10]. But
all these attempts fundamentally confuse two Lie groups: We explain this
in Chapter 1. ToE needing absolute mathematical rigor, it is impossible
to build the theory on the quicksand of these previous undertakings. For
instance, we find that we certainly need a separate space-time manifold; we
also absolutely need the SU(2) group in nonrelativistic quantum mechanics
and the SL(2,C) group in relativistic quantum mechanics.

What we propose here follows many previous attempts. Weyl’s unified
theory was based on the notion of gauge that he introduced[106]. This
attempt at a unified theory was equivalent to the use of a similitude group
as a local invariance group. Weyl’s theory was developed at a time when
neither the gauge invariance of the quantum wave nor the chirality of weak
interactions could be accounted for. Moreover, the one-parameter Lie group
generated by the ratio of similitude is the multiplicative group of positive
real numbers when a U(1) group is needed for the electric gauge invariance.

Another major attempt was Penrose’s theory of twistors [97][98]. Since
this theory also began from the Dirac equation and from left and right
spinors of the Dirac theory, there are numerous connections between twistor
theory and what we study here. Nevertheless, we start in a very different di-
rection: Penrose’s aim was the generalization of the quantum wave within a
mathematical framework vast enough to contain both nonrelativistic quan-
tum mechanics, Hermitian linear spaces, generalized probabilities, and the
gravitation of GR. In short his aim was the quantization of gravitation. For
our part, we do not start from the Hamiltonian form of nonrelativistic quan-
tum mechanics: we begin with only the fermionic part of the Lagrangian
density in the Standard Model. This is also due to the necessity for a total
logical coherence between the Standard Model and general relativity.

The most important attempts at unification were worked out by Einstein
from 1917 until his death [106]. He tried various possible paths to unify
electromagnetism, gravitation and quantum physics. It is one of his paths
that we develop here in Chapter 4, a space-time manifold with torsion. We
also explain why he could not fully develop this approach himself, when
quark properties and the importance of chiral waves were yet unknown.
Moreover, Einstein could not foresee the inclusion of the space-time manifold
as the self-adjoint part of the Cl∗3 Lie group.

Many other attempts, which were very popular thirty years ago, were
based on the use of numerous supplementary dimensions of space-time, like
string and superstring theories. The starting point of these theories, aiming
for a theory of everything, is a greater gauge group: a simple one unifying
electromagnetism, weak interactions and strong interactions, like SU(5) or
SO(10). We do not follow this still-popular path. Such attempts at grand
unified theories have only led to false predictions, like the non-conservation
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of the baryonic quantum number or the existence of many new particles
never observed. This grand unification could not be our starting point: the
gauge group of the Standard Model is actually embedded in a smaller gauge
group, the SO(8) group which is the natural invariance group of Cl3, which
is 8-dimensional. And this restriction is useful: it gives the reason for the
difference between quarks and leptons which do not see strong interactions.

So our research path is new: supplementary degrees of freedom that
we use do not come from a greater space-time. The space-time of special
relativity (SR) and the tangent space-time used in general relativity are
the self-adjoint 4-dimensional part of Cl3, which is an 8-dimensional lin-
ear space on R. Its multiplicative group Cl∗3 which generalizes the SU(2)
group of quantum mechanics is also 8-dimensional: here we thus obtain two
supplementary dimensions in comparison with the Lorentz group, which is
6-dimensional. Moreover, the End(Cl3) group is a 64-dimensional group. It
is also a ring, containing Cl∗3 as subring, extensive enough to describe quan-
tum waves of all objects, particles and antiparticles, of each generation.
Moreover, multiplication in End(Cl3) is a generalization of multiplication
in Cl∗3 = End(C2).

This research path does not need new particles; we hence respect and
corroborate the Standard Model. The only possible objects that may be
added to the ones known are right-handed neutrino waves. We study these
complete neutrinos which may also be called magnetic monopoles.

The main reason why we are able to add gravitation to the three other
kinds of interactions, is that we use a nonlinear term of proper mass in all
wave equations. The Weinberg-Salam model could not obtain such mass
terms.

Chapter 1 is devoted to the electron in the Cl3 algebra framework. Most
of the novelties that we add to the Standard Model are presented there,
such as the true number of densities, improved wave equation, extended rel-
ativistic invariance, double energy-momentum tensor, and the link between
these tensors and electromagnetic field. That chapter is the only one which
does not seem to be concerned by “second quantization”. There we use the
notation of first quantization, with experimental results on energy levels
obtained in this framework. The main change from the first edition is that
we use a mass term for each left and right part of the fermionic wave.

Chapter 2 explains how passing from the Cl3 algebra to the End(Cl3)
algebra is equivalent to second quantization for the fermionic part of the
Standard Model. Through this algebra we satisfy the decomposition of
the full wave function into sixteen parts, eight left ones and eight right
ones. This second chapter also studies weak interactions mixing the elec-
tron with the electron neutrino. The neutrino wave is incorporated in the
wave function of a leptonic magnetic monopole: this is the only possibil-
ity of extending the fermionic wave function as allowed by the Standard
Model. We also fully explain the origin of the extremal principle and of the
quantization of action. The study is extended in Chapter 3 to weak and
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strong interactions of quarks. We generalize the form-invariant derivative.
This derivative simplifies the part of weak interactions for the quark wave
function.

Chapter 4 incorporates gravitation into quantum physics such as de-
scribed in the preceding chapters. The formulation of general relativity as
the equality between two tensors is extended to be an equality between
two connections of the space-time manifold. We explain whence come both
the Pauli exclusion principle and the equivalence principle at the basis of
general relativity. The global structure of space-time both accounts for the
EPR paradox and gives a cosmic expansion with the most recent estimate
of the beginning of the acceleration.

Afterwards we present our conclusions. That chapter includes many
items that we cannot elaborate further in this introduction. There we also
explain why we now change the title from “a” to “the” theory of everything.

The most technical parts are placed in four appendices. The presentation
of the tools of Clifford algebra comprises Appendices A and B. There we
show in a detailed and basic manner the algebras used in previous chapters.
The resolution of the Dirac equation for the hydrogen atom is thoroughly
worked out in Appendix C. Various calculations form Appendix D.
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Chapter 1

The electron wave with spin
1/2

First we present the usual matrix framework, the quantum
wave of the electron and its wave equation. We study the wave
equation in the Clifford algebra of space and in the Clifford alge-
bra of space-time. We study tensor densities of the linear wave
equation (the Dirac equation). The form invariance of the wave
equation is extended to the multiplicative group of the Clifford
algebra of space. The relativistic invariance introduces left and
right parts of the wave. We simplify the Lagrangian density from
which the wave equation comes, and we study an improved wave
equation. A dual logical link exists between the wave equation and
Lagrangian density. The electric gauge invariance is not changed.
A second gauge invariance and a second conservative current ap-
pear. Gauge invariance and form invariance are compatible with
mass terms. We coherently set out the normalization of the wave,
the charge conjugation, the solutions for the hydrogen atom and
the Pauli principle. We study the recursion of the improved wave
equation and its consequences. We introduce the notions of nu-
meric dimension and double space-time. We study the energy–
momentum vector and the dynamics of two energy–momentum
tensors. This gives the Lorentz force for the electron. We identify
a direct link between the electromagnetic field and momentum–
energy tensors of the electron wave.

1.1 The wave equation of the electron

In 1926 two major breakthroughs were made about the electron: the
discovery of the electron spin, which means that the electron is a little

23
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magnet, even at rest, and the formulation of a wave equation by Erwin
Schrödinger. This equation reads in the notation of 1934 [54] as:

h

2πi

∂ψ

∂t
= H(ψ), (1.1)

where ψ = ψ(x, y, z, t) is a complex number, for each value of x, y, z, t, and
h is the Planck constant. The wave of the Schrödinger equation is then
a function with partial derivatives from R4 into C. This wave equation
is linear. Functions that are solutions of the wave equation form a linear
subspace of the linear space F(R4,C). Most of the concepts of quantum
physics so far have come from the study of the Hamiltonian H included
in the wave equation. Since we will not use this wave equation, we now
proceed with the rest of the story of quantum mechanics.

The electron is also a magnet; this is the origin of the properties of
permanent magnets that we use daily. So we must account for this magnet.
After Pauli’s first attempt to explain these magnetic properties, Dirac made
use of and carried forward Pauli’s attempt by coming up with another wave
equation, only a few months later: this wave equation was published as early
as 1928 [61, 62]. Ninety years later, we can present this wave equation (in
semi-modern notation, and with the usual Einstein summation convention)
as follows 1:

0 = [γµ(∂µ + iqAµ) + im]ψ; q :=
e

ℏc
; ℏ :=

h

2π
; m :=

m0c

ℏ
. (1.2)

The four Aµ are the components of the space-time vector called the exterior
electromagnetic potential 2 that is created by other charges; e is the charge
of the electron andm0 is the proper mass 3 . We must see the great difference
between the ψ of the Schrödinger equation and the ψ of the Dirac equation
expressed as:

ψ :=

(
ξ
η

)
; ξ :=

(
ξ1
ξ2

)
; η :=

(
η1
η2

)
, (1.3)

because now the ξj = ξj(x, t) and the ηj = ηj(x, t) play the same role as
functions of space and time coordinates with value in the complex field.
The Dirac wave is hence a function with derivatives from R4 into C4. 4 This

1. Most modern presentations use a system of “natural” units where c = 1 and ℏ = 1.
We will see in 1.5.4 why we cannot use the ℏ = 1 convention.

2. We will see in Chapter 3 how this potential is not exterior, but dependent on the
wave.

3. The wave equation of the electron always includes a mass term and a charge term.
This equation is too often presented without its charge term, as if the electric interaction
could be removed and restored at will. No physical process allows us to change or omit
the charge since this electric charge is quantized.

4. We may also consider the Dirac wave as a set of four functions from R4 into C.
Thus, even if the usual term for the wave of quantum mechanics is “wave function”, here
we use four functions and thus the general term “wave” seems more appropriate in the
Dirac theory.
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wave equation is also linear. The solutions are thus elements of a linear
subspace of the set of functions F(R4,C4). The Dirac equation needs to
choose four suitable γµ matrices. Our choice is 5 :

σ1 :=

(
0 1
1 0

)
; σ2 :=

(
0 −i
i 0

)
; σ3 :=

(
1 0
0 −1

)
; γj :=

(
0 σj

−σj 0

)
,

σj = −σ̂j = σ̂j := −σj , j = 1, 2, 3, (1.4)

γ0 = γ0 :=

(
0 I2
I2 0

)
; I2 = σ0 = σ0 = σ̂0 = σ̂0 :=

(
1 0
0 1

)
,

The σµ matrices and their products generate an 8-dimensional algebra on
R which is 4-dimensional on C, named the Pauli algebra or the 2×2 matrix
algebra: M2(C). The choice of the Pauli matrices is fixed by the intrinsic
basis (V1, V2, V3, V4) of M2(C) where the projectors Vn satisfy:

V1 :=
1

2
(σ0 + σ3) =

(
1 0
0 0

)
; V2 :=

1

2
(σ1 + iσ2) =

(
0 1
0 0

)
,

V3 :=
1

2
(σ1 − iσ2) =

(
0 0
1 0

)
; V4 :=

1

2
(σ0 − σ3) =

(
0 0
0 1

)
. (1.5)

With these usual matrices, ξ is the right part and η is the left part of the
wave, because in the Dirac theory it is the γ5 matrix that allows us the
definition of projectors on the right and left parts of the wave: 6

γ5 := iγ1γ2γ3γ0 =

(
I2 0
0 −I2

)
;
1 + γ5

2
ψ =

(
ξ
0

)
;
1− γ5

2
ψ =

(
0
η

)
. (1.6)

The Dirac matrices are not uniquely defined. The Dirac theory easily proves
that any other choice satisfies

γ′
µ
=MγµM−1; ψ′ =Mψ, (1.7)

where M is a 4 × 4 fixed invertible matrix. This always allows us to come
back to our choice (1.4). This choice is convenient both for the resolution
of the wave equation in the case of the hydrogen atom [14] [36] and for an
electron at high velocity. On the contrary, for the study of an electron with
low velocity and for deriving the Pauli equation, the initial choice of γ′µ
matrices was [12]:

M =M−1 :=
1√
2
(γ0 + γ5); γ

′
0 =Mγ0M = γ5; γ

′
j =MγjM = −γj , (1.8)

5. The meaning of the notation σ̂ is explained in A.3.3.
6. With the Pauli wave equation the usual terms are “left-handed” and “right-handed,”

because the Pauli wave is a mixing between the left – right and the up – down projectors.
“Left” and “right” are more appropriate in the Dirac theory, because these terms match
the column names of 2× 2 Pauli matrices.
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for j = 1, 2, 3. We then have:

ψ′ =Mψ =


ψ′
1

ψ′
2

ψ′
3

ψ′
4

 =
1√
2


ξ1 + η1
ξ2 + η2
ξ1 − η1
ξ2 − η2

 ; χ :=

(
ψ′
1

ψ′
2

)
; ω :=

(
ψ′
3

ψ′
4

)
. (1.9)

Using matrices (1.4) the Dirac equation (1.2) reads:

0 =

(
im σµ(∂µ + iqAµ)

σ̂µ(∂µ + iqAµ) im

)(
ξ
η

)
; ∂µ :=

∂

∂xµ
; x0 := ct. (1.10)

This is equivalent to the system:

0 = σµ(∂µ + iqAµ)η + imξ,

0 = σ̂µ(∂µ + iqAµ)ξ + imη. (1.11)

The mass term of the wave equation for the ξ part of the wave contains η,
while the mass term of the wave equation for the η part of the wave contains
ξ. This crossing of terms forbids the use of either ξ or η alone. Next, to get
the true Pauli equation it is necessary to break the space-time symmetry of
these equations by:

0 = ∂0η + ∂⃗η + iq(A0 − A⃗)η + imξ; ∂⃗ = σ1∂1 + σ2∂2 + σ3∂3,

0 = ∂0ξ − ∂⃗ξ + iq(A0 + A⃗)ξ + imη; A⃗ = A1σ1 +A2σ2 +A3σ3. (1.12)

Multiplying by i we get the Hamiltonian form

−i∂0η = i∂⃗η − q(A0 − A⃗)η −mξ,

−i∂0ξ = −i∂⃗ξ − q(A0 + A⃗)ξ −mη. (1.13)

But this Hamiltonian form does not have the true properties of the Hamil-
tonian operator of the Schrödinger or the Pauli wave equations 7. Adding
and subtracting both equations we get

0 = (∂0 + iqA0 + im)χ+ (∂⃗ − iqA⃗)ω, (1.14)

0 = (∂0 + iqA0 − im)ω − (∂⃗ − iqA⃗)χ. (1.15)

7. This is why the first form of the Dirac wave, using αj and β matrices which are
indeed truly Hamiltonian, is another wave equation, which is not equivalent to the Dirac
equation used here and in the whole relativistic part of the Standard Model. There, one
goes from one equation to the other simply by multiplying on the left side by γ0, yet
forgetting to multiply also by γ−1

0 on the right side. It is thus a different wave equation.
This may be seen, for instance, when the electromagnetic potential A does not commute
with γ0, which is the case if the magnetism of the electron or the weak interaction is not
negligible.
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The nonrelativistic approximation replaces (1.15) with another equation (De
Broglie considered this as totally incorrect [57]), without its time derivative:

ω =
i

2m
(∂⃗ − iqA⃗)χ, (1.16)

and next by substituting ω in (1.14) we arrive at the Pauli equation:

(∂0 + iqA0 + im)χ =
1

2im
(∂⃗ − iqA⃗)2χ. (1.17)

The substitution of ω is justified by the Schrödinger equation where we have
in modern notation iℏc∂0ψ = Eψ, and by the nonrelativistic approxima-
tion E ≈ m0c

2. Next we easily place the Pauli wave equation under the
Hamiltonian form of the Schrödinger equation (1.1):

iℏc∂0χ = Hχ; Hχ = (eA0 +m0c
2)χ+

ℏ2

2m0

(
∂⃗ − i

e

ℏc
A⃗
)2
χ. (1.18)

This is how quantum field theory (QFT) usually gets the “Hamiltonian of
the Dirac equation.” But the relativistic equation (1.2) is not used, only the
approximation of this equation by the Pauli equation (1.17). Therefore here
we will only use the Dirac equation and the Lagrangian formalism, never
the approximation by the Pauli equation nor its Hamiltonian formalism 8,
because we need to satisfy in their minutest details any implication of spe-
cial relativity (SR). Further, it is to be noted that the replacement of the
Dirac equation by the Pauli equation is not relativistic. This indeed takes
away nothing from the results that QFT has so far obtained, just as gen-
eral relativity (GR) does not suppress the results of Newtonian gravitation,
which is only slightly corrected in low gravitational fields. The replacement
by the Pauli wave works adequately so long as the quantum wave is reduced
to only one spinor wave, mostly a left wave. But logically corrections must
be made, so as to account for some “anomalies,” when it is necessary to
return to waves with both a left and a right part, or when two left waves
are in use.

Now with the usual summation of upper and lower indices, we let:

∇ := σµ∂µ; ∇̂ := σ̂µ∂µ; A := σµAµ; Â := σ̂µAµ,

A := γµAµ =

(
0 A

Â 0

)
; ∂∂∂ := γµ∂µ =

(
0 ∇
∇̂ 0

)
. (1.19)

These calculations actually operate in Clifford algebra, more precisely in
two algebras: the Pauli algebra which is also called Cl3 (as Clifford algebra
of R3), and the Clifford algebra of space-time Cl1,3, which is the algebra

8. Moreover it is very difficult to obtain a Hamiltonian formalism in a truly relativistic
fashion. This is the aim of I. Kanatchikov [80] as it is a prerequisite step for a unification
of the different Hamiltonian formalisms of various parts of physical theory.
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used more particularly by Hestenes, Boudet and Casanova [9]. A detailed
introduction to Clifford algebra is presented in [22, 28, 36] and also in this
book, Appendix A. We then detail in Appendix B the properties of Cl1,3
which is isomorphic to a real subalgebra of the complex algebra M4(C).
Actually Cl1,3 is a left (and a right) modulus on the Cl3 ring. In the
calculations of the Dirac theory, this corresponds to the calculation by blocks
of 2 × 2 matrices for the 4 × 4 matrices. The system (1.11), equivalent to
the Dirac equation, is expressed as:(

ξ
η

)
=

i

m

(
0 ∇+ iqA

∇̂+ iqÂ 0

)(
ξ
η

)
. (1.20)

This has the recursive functional form

ψ = f(ψ); f(ψ) =
i

m
γµ(∂µ + iqAµ)ψ =

i

m
(∂∂∂ + iqA)ψ. (1.21)

This form is very useful in studying the second-order equation that we come
to now.

1.1.1 Second-order equation
By iteration of the functional f we get ψ = f [f(ψ)] which means:

ψ =
i

m
(∂∂∂ + iqA)[

i

m
(∂∂∂ + iqA)]ψ,

= − 1

m2
[□ψ + iq∂∂∂(Aψ) + iqA∂∂∂ψ − q2A2ψ], (1.22)

□ : = ∂∂∂∂∂∂ = ∂0∂0 − ∂1∂1 − ∂2∂2 − ∂3∂3.

where □ is the D’Alembertian. Multiplying by m2 this is equivalent to:

0 = (□+m2 − q2A2)ψ + iq[∂∂∂(Aψ) +A∂∂∂ψ]. (1.23)

And we have:

∂∂∂(Aψ) = (∂∂∂A)ψ + 2Aµ∂µψ −A∂∂∂ψ; (1.24)

F =

(
F 0

0 F̂

)
= ∂∂∂A =

(
0 ∇
∇̂ 0

)(
0 A

Â 0

)
=

(
∇Â 0

0 ∇̂A

)
. (1.25)

Then the electromagnetic field (F in space-time algebra, F = E⃗ + iH⃗ in
space algebra, where E⃗ is the electric field and H⃗ the magnetic field) allows
us to obtain at the second order:

0 = (□+m2 − q2A2)ψ + iq[(∂∂∂A) + 2Aµ∂µ −A∂∂∂ +A∂∂∂]ψ,

0 = (□+m2 − q2A2)ψ + iq[F+ 2Aµ∂µ]ψ. (1.26)
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We may remark that the classical electromagnetic field F comes with a field
of operators 2Aµ∂µ, in accordance with quantum field theory, where the
electromagnetic field is a field of operators. We may also see two things that
seem strange in this wave equation: firstly the field of operators is a scalar
field, acting on ξ and η in the same way while the classical part F is a wholly
bivector field, which is well established experimentally: this is linked to the
complete absence of longitudinal polarization in light. Secondly the squares
m2−q2A2 are of opposite signs, while the energy–momentum of the electron
is the sum of a mechanical energy–momentum mv and an electromagnetic
energy–momentum qA 9, instead of a difference between these two energy–
momentum vectors. We thus replace (1.24) with an equality similar to the
Leibniz rule for the derivative of a product:

∂∂∂(Aψ) = F(ψ) +A∂∂∂ψ; F(ψ) = ∂∂∂(Aψ)−A∂∂∂ψ. (1.27)

The second-order wave equation thus gives:

0 = (□+m2 − q2A2)ψ + iq[F(ψ) + 2A∂∂∂ψ]

= (□+m2 − q2A2)ψ + iq[F(ψ)− 2A(iqA+ im)]ψ (1.28)

= [□+ (m+ qA)2]ψ + iqF(ψ).

This yields both the expected sign for the energy–momentum term and an
electromagnetic field that is actually a field of operators acting on ψ.

1.1.2 The form invariance of the Dirac equation

Attention please: it will be necessary to explain and correct a mistake
made as early as the beginning of relativistic quantum physics, next used
in all books on electron physics. Attention again: this form-invariance is
very different from anything used in relativistic physics before quantum
mechanics. First, space-time is considered in practice as a subset of the Cl3
algebra (that was named the Pauli algebra) because, with Greek indices at
0, 1, 2, 3 and

x0 = ct ; x⃗ = x1σ1 + x2σ2 + x3σ3 ; ∂µ =
∂

∂xµ
, (1.29)

quantum physics as early as 1927 10 wrote in the frame of Pauli’s wave
equation:

x⃗ =

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (1.30)

9. This characterization of the energy–momentum of the electron as a sum is explicit
in the work of Hestenes (formula 6.22c) in [76]).

10. All that must be known about Cl3 is included in Appendix A, with a minimal
level of mathematics. Thus an informed lecturer may skip this Appendix. Nevertheless
a review might be useful.
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This includes the whole physical space in the Cl3 algebra. It is necessary
because the SU(2) group, which replaces the SO(3) rotation group in the
Pauli theory, is a subgroup of the Cl∗3 Lie group. And this was the starting
point to extend the previous inclusion, by adding σ0 = I to the σj . This is
linked to the representations of the Lorentz group [95][100] 11 :

x = xµσµ = x0 + x⃗ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (1.31)

And thus space-time is identified with the self-adjoint subset of the Pauli
algebra Cl3, which is the part of the M elements satisfying M = M† (this
identification is the starting point of Chapter 4).

The algebraic structure of Cl3 is richer than the complex field. Instead
of a single conjugation we now have three: the P :M 7→ M̂ transformation
is the main automorphism of this algebra. This P , called parity in quantum
mechanics, allows us to separate even and odd parts and satisfies ÂB = ÂB̂.
Next the antimorphism M 7→ M̃ = M† is the reversion which satisfies
ÃB = B̃Ã. These morphisms generate a third one, the product of the
previous conjugations: M 7→ M = M̂† = tr(M) −M is an antimorphism
since AB = BA (more details in A.3.3). And we get 12 :

x̂ = x = x0 − x⃗, (1.32)

||x||2 = det(x) = xx̂ = x · x = (x0)2 − (⃗x)2 = (x0)2 − (x1)2 − (x2)2 − (x3)2.

The square ||x||2 of the pseudo-norm of any space-time vector x is thus
simply the determinant of this vector. Therefore the scalar product of two

11. After Rose’s book [99] explaining with modern terms the results exposed in de
Broglie’s book [54], all succeeding reports on this invariance introduced the Lorentz trans-
formation of the xµ using first an infinitesimal Lorentz transformation. They actually
only use the mathematical tool of the Lie algebra of the SL(2,C) Lie group, which is the
set sl(2,C) of the 2 × 2 complex matrices with a null trace. And using a general result
about the SO(n) group, they suppose, without any proof, that this result is also true in
the SO(1, 3) case! (They thus think that the Lie algebra of the SO(1, 3) Lie group is
the same as the Lie algebra of the SL(2,C) Lie group). The algebraic calculations are
hence formally exact, but the strangeness of the situation is hidden into the exponential
functions (notice the plural) which are applications of a single algebra onto two different
groups. And these two different exponential functions are not presented as distinct, even
if one of them applies to 2 × 2 complex Pauli matrices while the other applies to 4 × 4
real matrices. And there are two different groups, the group of 2 × 2 complex matri-
ces with determinant 1 (where the unit is the unit matrix I2) and the group of Lorentz
transformations, where the unit is the identity transformation, id. It is nonsense to use
both exp(0) = I2 and exp(0) = id, which should imply I2 = id. It is thus necessary to
distinguish two exponential functions: exp1 applies the elements in the vicinity of 0 in
M2(C) to SL(2,C), while exp2 applies the same elements to the Lorentz group, where
each element is one-to-one associated to a 4 × 4 real matrix. It may be correct that
exp1(0) = I2 and exp2(0) = I4, and false that I2 = I4.

12. R is included in each Clifford algebra. Here this is equivalent to the identifica-
tion between numbers a and scalar matrices aI2. This simplifies many calculations.This
identification is often used in mathematics; for instance the R field is put into the C field.
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space-time vectors x and y reads:

x · y =
1

2
(xŷ + yx̂) =

1

2
(x̂y + ŷx) = x0y0 − x1y1 − x2y2 − x3y3. (1.33)

The parity transformation P : x 7→ x̂ is thus included in the geometric
structure of space-time (see Chapter 4). Let M be any nonzero element in
Cl3 (that means any fixed nonzero Pauli matrix) and let R be the trans-
formation of space-time into itself such that for any x is associated x′ given
by 13:

x′ = x′
0
+ x⃗ ′ = R(x) =MxM†. (1.34)

We note, if det(M) ̸= 0:

det(M) = reiθ , r = |det(M)| ; M := r−1/2M. (1.35)

Thus r is the modulus and θ is an argument of the determinant of M .
Attention, please: r is not the determinant of M , it is only the modulus of
the determinant. We get:

(x′
0
)2 − (x′

1
)2 − (x′

2
)2 − (x′

3
)2 = det(x′) = det(MxM†)

= reiθ det(x)re−iθ = r2[(x0)2 − (x1)2 − (x2)2 − (x3)2]. (1.36)

Therefore R multiplies any space-time distance by r and we call this trans-
formation “similitude with ratio r.” We refer to M as the dilator of the
similitude R. Even if, since 1928, most physicists confused similitude and
dilator, here we will use two distinct words because a similitude is not a
dilator. We now consider the R transformation such that:

x′ = R(x) :=MxM†. (1.37)

x′ = r1/2Mxr1/2M† = rMxM† = rR(x); R = rR. (1.38)

Therefore R is the product, in any order, of R and of a homothety with
ratio r. And since we defined M such that:

|det(M)| = 1, (1.39)

the set of the M is the Lie group G of the elements in GL(2,C) such that
|det(M)| = 1. We then have in place of (1.36):

(x′0)2 − (x′1)2 − (x′2)2 − (x′3)2 = det(x′) = det(MxM†)

= |det(M)|2 det(x) = (x0)2 − (x1)2 − (x2)2 − (x3)2. (1.40)

Thus R is a Lorentz transformation. With the usual summation convention
of upper and lower indices, we let:

x′µ = Rµ
νx

ν ; x′µ = Rµ
νx

ν . (1.41)

13. Only one other possibility exists: x⃗ ′ = R(x) = MxM†/
√
r. With N := 4

√
rM we

have x⃗ ′ = R(x) = NxN†, and we recover our simplest form.
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(Rµ
ν ) is the real 4× 4 matrix of the R similitude and (Rµ

ν ) is the real 4× 4
matrix of the Lorentz transformation R. We hence have the following (see

A.4.2) for any dilator M =

(
a b
c d

)
̸= 0:

2R0
0 = |a|2 + |b|2 + |c|2 + |d|2 > 0, (1.42)

and x′
0 then has the same sign as x0 at the origin: the similitude R, and

hence also R, conserves the arrow of time. Moreover, for any dilator M in
Cl3, and even if the ratio is null, we obtain (detailed calculations in A.4.5)
the following simple and nontrivial equality:

det(Rµ
ν ) = r4. (1.43)

If r is nonzero then r4 > 0: det(R) > 0. Thus R conserves the orientation of
space-time, and since the transformation conserves the orientation of time,
R also conserves the orientation of space. Moreover we get:

det(Rµ
ν ) = 1. (1.44)

This concludes the demonstration that R is a transformation in the Lorentz
group (the transformation group conserving the space-time metric). But
this group is not the invariance group of the wave with spin 1/2. Only
the restricted Lorentz group is obtained from (1.34). The true Lorentz
group needs the use of the P and T transformations. And neither P nor
T is an exact symmetry of nature; both are violated in weak interactions.
Therefore we will only use the restricted Lorentz group. We consider again
the f function which associates to the dilator M the similitude R = f(M).
Let M ′ be any other dilator, with:

det(M ′) = r′eiθ
′
; R′ = f(M ′) ; x′′ =M ′x′M ′†. (1.45)

We then get :

x′′ =M ′x′M ′† =M ′(MxM†)M ′† = (M ′M)x(M ′M)†

R′ ◦R =f(M ′) ◦ f(M) = f(M ′M), (1.46)

and with r ̸= 0, f becomes a homomorphism 14 from the (Cl∗3,×) group into
the (D∗, ◦) group where D∗ is the set of all similitudes with nonzero ratio.
These two groups are Lie groups: (Cl∗3,×) is the 8-dimensional GL(2,C)
group. But (D∗, ◦) is only a 7-dimensional Lie group: one dimension disap-
pears because the kernel of f is not reduced to the neutral element. Let θ
be any real number and let M be a dilator such that:

M = eiθ/2 =

(
eiθ/2 0
0 eiθ/2

)
; det(M) = eiθ, (1.47)

14. Most quantum physicists use the name “representation” in place of homomorphism.
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we then get:
x′ =MxM† = eiθ/2xe−iθ/2 = x. (1.48)

f(M) is thus the neutral element and M belongs to the kernel of f . There-
fore the kernel is a one-parameter group and only seven parameters remain
in D∗. Six of them define a proper Lorentz transformation and the seventh
is the ratio of the similitude r. For instance if the dilator is

M = ea+bσ1 = ea[cosh(b) + sinh(b)σ1], (1.49)

thus the similitude R defined in (1.34) satisfies

x′ =MxM† = ea+bσ1(x0 + x1σ1 + x2σ2 + x3σ3)e
a+bσ1

= e2a[e2bσ1(x0 + x1σ1) + x2σ2 + x3σ3]. (1.50)

We hence get:

x′
0
+ x′

1
σ1 = e2a

[
cosh(2b) + sinh(2b)σ1

]
(x0 + x1σ1),

x′
0
= e2a

[
cosh(2b)x0 + sinh(2b)x1

]
; x′

2
= e2ax2, (1.51)

x′
1
= e2a

[
sinh(2b)x0 + cosh(2b)x1

]
; x′

3
= e2ax3.

We can see that the similitude R is the product, in any order, of a proper
Lorentz transformation (boost) mixing the temporal component x0 and the
spatial component x1 by a homothety with ratio r = e2a. Next if:

M = ea+biσ1 = ea[cos(b) + sin(b)iσ1], (1.52)

then the similitude R defined in (1.34) satisfies

x′ =MxM† = ea+biσ1(x0 + x1σ1 + x2σ2 + x3σ3)e
a−biσ1

=e2a[x0 + x1σ1 + e2biσ1(x2σ2 + x3σ3)]. (1.53)

We thus have:

x′
2
σ2 + x′

3
σ3 = e2a

[
cos(2b) + sin(2b)iσ1

]
(x2σ2 + x3σ3),

x′
2
= e2a

[
cos(2b)x2 + sin(2b)x3

]
; x′

0
= e2ax0, (1.54)

x′
3
= e2a

[
− sin(2b)x2 + cos(2b)x3

]
; x′

1
= e2ax1.

And so R is the product of a rotation with axis Ox1 and a 2b angle by the
same homothety with ratio r = e2a. Considering the distinction between
the dilator M and the similitude R is absolutely necessary. This distinction
was unfortunately never made prior to our work: the Dirac theory confused
M and R, so much so that the same name was given to these different
objects! Here we will absolutely avoid calling M a Lorentz transformation
since it is a very different object, even if each dilator M allows us to define a
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similitude. The Lie group of the dilators, Cl∗3 = GL(2,C), and the group D∗

of the similitudes are very different. They do not have the same topology,
nor do they even have the same dimension. Thus they do not have the
same set of infinitesimal elements that is the same Lie algebra. Hence they
must not be confused, even in the neighborhood of the neutral element.
The previous calculations are simple because we start from the dilator M
to get the similitude R. The reverse calculation is impossible and it is
actually nonsense, because the similitude R is the image of the dilator M
by the function f , and this function is not invertible. No isomorphism can
exist between the 8-dimensional group of the dilators and the 7-dimensional
group of the similitudes.

Restricted Lorentz group

If we now add the condition |det(M)| = 1, we identify M and M . The
set of the dilators M is G, and (1.36) is reduced to:

(x′
0
)2 − (x′

1
)2 − (x′

2
)2 − (x′

3
)2 = (x0)2 − (x1)2 − (x2)2 − (x3)2. (1.55)

The similitude R is then simply a Lorentz transformation and the set of
R is called the restricted Lorentz group, usually denoted L↑

+. The time
orientation and space orientation are separately conserved. The determinant
satisfies:

1 = |eiθ| ; θ ∈ R. (1.56)

The 7-dimensional Lie algebra of G and the 6-dimensional Lie algebra of L↑
+

cannot be confused. The first one is the Lie algebra of a 7-dimensional real
Lie group, while the second is the Lie algebra of a 6-dimensional real Lie
group. What happens is not only that dilation and similitude are mixed
up, another mistake is to confuse det(M) = 1 (which defines SL(2,C)) with
|det(M)| = 1 (which defines G). The reason of these mistakes is easy to
understand: the Pauli wave equation induced a mixing up of the SO(3) and
SU(2) Lie groups, which have the same Lie algebra: the algebra su(2) of
the Hermitian matrix with a null trace. Since det[exp(M)] = exp(tr(M)],
the element exp(M),M ∈ su(2) has a determinant 1.

The exponential function is general in Lie group theory. It is a function
from a neighborhood (which may be small) of the zero in the Lie algebra,
on a neighborhood of the unity in the Lie group. In the simple case of the
GL(n,C) Lie group, which has the algebra of n×n complex matrices as Lie
algebra, the exponential function is simply:

exp(M) = eM =

∞∑
n=0

Mn

n!
. (1.57)

Nonrelativistic quantum mechanics uses two simple properties of SU(2):
first, any element M in SU(2) satisfies:

M = exp(iajσj), j = 1, 2, 3, aj ∈ R. (1.58)
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Second, for any rotation R in SO(3), a M exists, defined up a sign, such
that R = f(M) where f is the homomorphism applying each dilator on the
associated similitude. We now consider M = −1 + σ1 + iσ2, which is an
element of SL(2,C) since det(M) = 1. And M only satisfies:

(σ1 + iσ2)
2 = 0; exp(σ1 + iσ2) = 1 + (σ1 + iσ2) + 0,

M = −[1− (σ1 + iσ2)]; M = − exp[−(σ1 + iσ2)], (1.59)
M = exp(iπ − σ1 − iσ2).

Hence the exponential function, in the SL(2,C) case has properties different
from the exponential in the SU(2) case. The lack of understanding of this
difference induced false theorems: Bacry [1] claimed (without proof!) that
any Lorentz transformation in L↑

+ is the product LR of a boost L and a
rotation R, while Naïmark [95] proved that any Lorentz transformation in
L↑
+ reads ub1v where u and v are rotations and b1 is a one-parameter boost.

This also implies 7 = 3 + 1 + 3 parameters. And it is the restriction f of
f to the G group which an homomorphism from G into L↑

+, and with the
same kernel, the 1-dimensional U(1) group, thus f is not invertible : the
calculation of M from R is impossible.

Nevertheless the G group contains as a subgroup the SU(2) group of
the 2× 2 unitary matrices with determinant 1. The restriction of f to this
subgroup is a homomorphism from SU(2) into the SO(3) rotation group
in space. The kernel of this homomorphism is now reduced to {±1}. This
is the basis of all calculations using the spin of a system of electrons. Of
course all results of these calculations, like the 6j and 9j symbols, are exact
since they properly use theorems on Lie groups, and they are calculated not
by composing rotations but by actually multiplying unitary matrices.

1.2 Extended invariance
The first important change that we now propose is the removal of the

condition |det(M)| = 1 and its replacement with det(M) ̸= 0 (this condition
is used only to obtain the structure of multiplicative group). That is to say,
we replace the 7-dimensional G Lie group by the 8-dimensional GL(2,C) =
Cl∗3 Lie group itself. This group is also the multiplicative group in Cl3, and
Cl3 is the Lie algebra of its subset Cl∗3. We may put forward four reasons:

1. This is possible (and very surprising) because the properties (1.36),
(1.42) and (1.43) are general and do not suppose that det(M) = 1 nor
|det(M)| = 1 [18, 20, 21]. Nowhere do these restrictive equalities seem
necessary for the wave of the electron. To see this it is enough to never use
infinitesimal transformations, contrary to most course books, and simply to
directly calculate in the Lie groups.

2. This value of the determinant of the dilator has no geometric origin in
space-time, while gravitation is linked to the geometry of space-time. And
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Cl∗3 is obviously a geometric group since it is the multiplicative group of the
algebra including space-time.

3. The Russian physicist V. Fock [71] rebuilt general relativity from the
properties of electromagnetism and gravitation. His starting point was, as
it was for Einstein, the invariance of the speed of light regarding any frame
of reference, even in movement of translation. Since light is an electromag-
netic wave, Fock considered an electromagnetic wavefront. He then proved
that the transformation linking the coordinates of an event was necessarily
linear, and he afterwards proved that the R transformation was necessarily
a Lorentz similitude, which means the product of a Lorentz transforma-
tion and a homothety. But he was working from electromagnetism (thus
solely from the similitude R) and had no luck to introduce the dilator M
that comes only with the quantum wave. Of course Fock was a master of
quantum mechanics but he no more accounted for the difference between M
and R than did other physicists. Since he wanted to get only the Lorentz
transformations he claimed that the ratio of the homothety was necessarily
1. Even though the invariance group of electromagnetic laws was known to
be much larger than the Lorentz group and included the similitudes, Fock’s
error flooded all the Russian work in this domain of physics. Afterwards
the success of Landau’s books extended this error to the whole of QFT.

4. This extended invariance will allow us to understand the geometry
of the four kinds of interactions in physics (electromagnetism, weak inter-
actions, strong interactions and gravitation), the quantization of kinetic
momentum, the proper nature of the electromagnetic field, and more in the
next chapters. The power of this approach comes from the inclusion of parity
transformation in the geometry of space-time resulting from ||x||2 = xP (x).

We now return to the Dirac equation and we look at how the wave with
spin 1/2 comes to be, without imposing the condition det(M) = 1. First
the right wave ξ and the left wave η do not transform similarly:

ξ′ = ξ′(x′) =Mξ =Mξ(x); η′ = η′(x′) = M̂η = M̂η(x). (1.60)

This is actually the origin of the existence of right waves and left waves:
they do not transform similarly in Lorentz transformations. The change is
caused by the boost (1.49) because we have

ξ′ = ea+bσ1ξ; η′ = ea−bσ1η. (1.61)

With transformations like (1.52), which are rotations, we have M̂ = M ,
and so the right wave and left wave transform similarly. Consequently the
theory of weak interactions may only start from the Dirac wave equation,
which is relativistic, the only one able to distinguish between right waves
and left waves (in contrast to the Pauli theory which only knows left-handed
and right-handed parts of the wave). This is well known in the Standard
Model. To see how the system (1.11) is changed (a system equivalent to the
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Dirac equation), we need the following nontrivial relation (details in A.4.4):

∇ =M∇′M̂ ; ∇′ = σµ∂′µ; ∂
′
µ =

∂

∂x′µ
. (1.62)

Hence we must separate the space-time vectors transforming like x which
we call contravariant vectors, from the vectors transforming like ∇ which
we call covariant vectors. The two supplementary dimensions of the in-
variance group induce new constraints which are added to the constraints
of relativistic invariance: in tensor calculus we now have no possibility of
moving a tensor index up or down. We also cannot replace a contravari-
ant n vector with the covariant ∇ like Lasenby did in [83]. The previous
constraints remain: for the transformations of the kind (1.49) as well as for
those of the kind (1.52), when we have a θ angle with the transformation
of ξ and η, we get a double angle 2θ with the transformation of x and ∇.
This too is well known in quantum physics. The system (1.11) becomes, if
qA is transformed like ∇ (which is necessary for the gauge invariance):

ξ′ =Mξ =M
i

m
(M∇′M̂ + iq′MA′M̂)η =MM

i

m
(∇′ + iq′A′)η′,

η′ = M̂η = M̂
i

m
(M̃∇̂′M + iq′M̃Â′M)ξ = M̂M̃

i

m
(∇̂′ + iq′Â′)ξ′. (1.63)

And with det(M) = reiθ we have:

MM = reiθ; M̂M̃ = re−iθ; M = reiθM−1. (1.64)

The system (1.63) can hence be expressed as:

ξ′ = reiθ
i

m
(∇′ + iq′A′)η′; η′ = re−iθ i

m
(∇̂′ + iq′Â′)ξ′. (1.65)

In the particular case where M belongs to SL(2,C), this is reduced to

ξ′ =
i

m
(∇′ + iqA′)η′; η′ =

i

m
(∇̂′ + iqÂ′)ξ′. (1.66)

So we are right in saying that the form of the wave equation is unchanged 15 .
For a complete use of the extended invariance group we shall first change

the appearance of the wave equation, placing any calculation in the frame-
work of the same algebra. This means that all elements of the wave equation
– differential operators, potentials, addition and multiplication, values of
the wave, space and time – will be put into the same algebraic-geometrical
structure. Next we shall change the wave equation itself by simplifying the
Lagrangian density from whence the equation comes.

15. A lecturer in a hurry may not see what differs here from the conventional exposition
of quantum mechanics. In fact, there is no difference except for the distinction between
∇ acting on η and ∇̂ acting on ξ, and the distinction between dilator and similitude.
But these distinctions (linked to parity) will prove essential for geometric properties of
the space-time manifold in Chapter 4.
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1.3 The Dirac equation in Cl3

It is possible to use instead the initial formalism of Dirac matrices (a
16-dimensional linear space on C, and a 32-dimensional linear space on R)
Cl1,3 (a 16-dimensional linear space on R) called space-time algebra. This
was done by Hestenes [74]–[78]. Here we present another formalism still
less costly in dimensions, using only the Cl3 algebra, a 8-dimensional linear
space on R. 16 The form used as early as 1928 for the relativistic invariance
that we just studied is the first reason for our choice. This invariance uses
only Cl∗3, the multiplicative group of Cl3. Second, the Dirac wave of the
electron has value only in Cl3, not in the full space-time algebra. Third,
which is the main reason, the use of Cl3 was discovered by one of the present
authors as sufficient for the description of the entire Dirac theory [15, 16]. It
will allow us to obtain the link between left and right spinors in the simplest
way.

For the expression of the Dirac wave in Cl3, it is enough to replace
the column matrices ξ and η by 2 × 2 matrices with a null column. This
changes nothing concerning the calculation because the product of matrices
is a row-to-column multiplication which operates separately on each row of
the left matrix and on each column of the right matrix in any product. For
an easier calculation of tensor densities we include a

√
2 factor and let:

R1 :=
√
2

(
ξ11 0
ξ12 0

)
; L̂1 :=

√
2

(
η11 0
η12 0

)
,

ϕ := R1 + L1 =
√
2(ξ1 η̂1) =

√
2

(
ξ11 −η1∗2
ξ12 η1∗1

)
. (1.67)

We note that the complex conjugate of z is either z, which is the usual
notation in mathematics, or z∗, which is usual in the Dirac theory. We
have:

ϕ̂ =
√
2

(
η11 −ξ1∗2
η12 ξ1∗1

)
=

√
2
(
η1 ξ̂1

)
,

R1 = ϕ
1 + σ3

2
=

√
2(ξ1 0); L̂1 = ϕ̂

1 + σ3
2

=
√
2(η1 0). (1.68)

The link between ϕ, R1 and L1 is independent of the reference frame used
because transformations in (1.60) are equivalent 17 to:

ϕ′ = ϕ′(x′) =Mϕ =Mϕ(x); ϕ̂′ = ϕ̂′(x′) = M̂ϕ̂ = M̂ϕ̂(x). (1.69)

16. The use of Cl3 was first promoted by W. Baylis [3].
17. This equivalence is not trivial and comes from the fact that σ2 is imaginary while

σ1 and σ3 are real matrices. The result is, for any ϕ, that the P transformation M 7→ M̂
exchanges ξ and η.
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The system (1.11) (equivalent to the Dirac equation) is then expressed as:

0 = (∇+ iqA)ϕ̂
1 + σ3

2
+ imϕ

1 + σ3
2

, (1.70)

0 = (∇̂+ iqÂ)ϕ
1 + σ3

2
+ imϕ̂

1 + σ3
2

.

Applying P : M 7→ M̂ 18 to the second equation, we get the equivalent
system:

0 = (∇+ iqA)ϕ̂
1 + σ3

2
+ imϕ

1 + σ3
2

, (1.71)

0 = (∇− iqA)ϕ̂
1− σ3

2
− imϕ

1− σ3
2

.

This system is itself equivalent to the single equation via addition:

0 = ∇ϕ̂+ qAϕ̂iσ3 +mϕiσ3, (1.72)

because each line of the system (1.71) is obtained by applying on (1.72) a
projector on the right and left wave, that is, in the Pauli algebra the multi-
plication on the right side by (1±σ3)/2. We will finish the simplification of
the Dirac equation by multiplying the right side with −iσ3 = σ21 = σ2σ1.
The Dirac equation is hence equivalent to:

0 = ∇ϕ̂σ21 + qAϕ̂+mϕ, (1.73)

and, using the parity transformation P , is equivalent to:

0 = ∇̂ϕσ21 + qÂϕ+mϕ̂. (1.74)

Once again and despite the very different look these equations are ex-
actly the Dirac equation. The gauge invariance now has the form:

ϕ 7→ ϕ′ = ϕeiaσ3 ; A 7→ A′ = A− 1

q
∇a (1.75)

When quantum physics becomes relativistic, the multiplication by the non-
specific imaginary number i must then be replaced by the multiplication on
the right side by i3 = iσ3. This term is, from the geometrical point of view,
a bivector or 2-vector, which means an oriented area (a cross product). It
is thus different from the 3-vector i = σ1σ2σ3 which is an oriented volume.
This other i is the one used for instance in the expression for the electro-
magnetic field as a sum of an electric field and a magnetic field: F = E⃗+iH⃗.

18. P is, from the mathematical point of view, the main automorphism in Cl3 changing
i into −i and σ3 into −σ3. From the physical point of view P stands for “parity” which
exchanges right and left waves.
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For anyone used to a single i, this is a major change, yet absolutely neces-
sary from the geometric point of view: a 2-vector is an oriented area, while
a 3-vector is an oriented volume, and an area is not a volume.

All objects present in the wave equation are now in the same algebra.
Calculations using 2× 2 matrices are much simpler than using 4× 4 Dirac
matrices. Moreover we get supplementary properties linked to the minimal
dimension of the 2× 2 matrices, such as the fact that comatrices giving an
inverse matrix are reduced to numbers.

1.3.1 Plane wave
This section uses the simplest case where the interaction with the ex-

terior electromagnetic field is negligible 19 . We then let A = 0. The Dirac
equation in the Cl3 algebra is thus reduced to

∇ϕ̂σ21 +mϕ = 0. (1.76)

We consider a plane wave with a phase φ such that:

ϕ = ϕ0e
φσ21 ; φ = mvµx

µ. (1.77)

We use the space-time vector called the reduced velocity:

v = σµvµ, (1.78)

and ϕ0 is a fixed term which gives

∇ϕ̂σ21 = σµ∂µ(ϕ̂0e
φσ21)σ21 = −mvϕ̂. (1.79)

Therefore the Dirac equation is equivalent to

ϕ = vϕ̂. (1.80)

By using the P conjugation this is equivalent to

ϕ̂ = v̂ϕ. (1.81)

Then combining the two previous equalities we have:

ϕ = v(v̂ϕ) = (vv̂)ϕ = (v · v)ϕ. (1.82)

If ϕ is invertible we must then get:

1 = v · v = v20 − v⃗ 2, (1.83)

v20 = 1 + v⃗ 2 ; v0 = ±
√
1 + v⃗ 2, (1.84)

19. We may be doubtful of the possibility of ignoring the charge of the electron. The
plane wave solutions are actually presented only in the interest of easier calculation. Yet
later, Fourier analysis allows us to extend the utility of this calculation much further.
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with a priori two possibilities for the sign. The minus sign implied a negative
energy for the particle – this was at the beginning a serious dissatisfaction for
Dirac. He hoped to get rid of the negative quantities, supposedly nonphys-
ical, that came from the Klein-Gordon equation which was the relativistic
version of the Schrödinger equation. And it was impossible to suppress
these negative energies 20 . They were necessary for obtaining any wave as a
sum of plane waves from the Fourier transformation, or for getting a small
enough wave packet. Six years later the discovery of the positron, a particle
which had the same mass as the electron yet an opposite charge, completely
changed the problem: these plane waves with negative energies were associ-
ated to the positron. And this association was considered as the triumph of
the Dirac theory. Nevertheless these waves with negative energies induced
formidable problems when their effects on the emission or absorption of
light were calculated. Moreover positrons seemed to have the same proper
mass, not a mass opposite to the proper mass of the electron (we will see
this later).

The calculation that we present here is much simpler than the cal-
culation made in relativistic quantum physics books using complex 4 × 4
matrices. This is a sufficient reason, among many others, to prefer the Cl3
algebra to the Dirac algebra.

1.3.2 Tensor densities without a derivative
The J = Jµσµ current is one of the tensor quantities of the Dirac theory

such that the definition Jµ = ψγµψ of the four components is made from the
spinor wave without a partial derivative. We may first remark with L. de
Broglie [54] about the strange character of these tensor densities which had
no true equivalent in physics before quantum theory. Several other similar
quantities were quickly noted [54], first a scalar one:

Ω1 = ψψ ; ψ = ψ†γ0 = (η1† ξ1†), (1.85)

where M† is the adjoint matrix (transposed conjugate). Next the six:

Sµν = iψγµγνψ, (1.86)

are considered as the components of an antisymmetric tensor of rank two.
The four Kµ:

Kµ = ψγµγ5ψ ; γ5 = −iγ0γ1γ2γ3 =

(
I2 0
0 −I2

)
, (1.87)

20. Plane waves, even if they are calculated here much more simply, are not the panacea
often presented. De Broglie warned us against the abuse made with these waves: a wave
unlimited in space or in time does not exist in nature. In an electronic microscope a train
of waves is always limited in space and in time. We saw in 1.2 how Fock made use of an
electromagnetic wavefront. Moreover this calculation neglects the charge term, as if we
were able to remove or restore a charge at will. Hence plane waves are much too virtual
and unreal to be very interesting from the physical point of view.
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are considered the components of a pseudovector in space-time, theoretically
linked to an antisymmetric tensor of rank three, even if this link is never
used. Finally:

Ω2 = −iψγ5ψ, (1.88)

is a relativistic invariant and allows us to define the main invariant ρ and
the Yvon-Takabayasi β angle:

Ω1 = ρ cosβ ; Ω2 = ρ sinβ ; Ω1 + iΩ2 = ρeiβ . (1.89)

With the Weyl spinors (left and right waves) we get:

Ω1 = ξ1†η1 + η1†ξ1 ; Ω2 = i(ξ1†η1 − η1†ξ1),

ρeiβ = Ω1 + iΩ2 = 2η1†ξ1 = 2(η1∗1 ξ
1
1 + η1∗2 ξ

1
2), (1.90)

ρe−iβ = Ω1 − iΩ2 = 2ξ1†η1 = 2(η11ξ
1∗
1 + η12ξ

1∗
2 ).

These tensor densities were intensively studied because physicists were very
eager to link these quantities to classical physics, where all studied quantities
are vectors and tensors (but they are not tensor densities). Actually these
16 tensor densities that we previously detailed know nothing of the phase
of the wave: they contain the product of ψ = ψ†γ0 by ψ and are then
gauge-invariant under the electric gauge 21 . Thus we cannot substitute the
dynamics of these densities for the dynamics of the ψ wave itself. Yet within
the Cl3 framework, Ω1 and Ω2 are very simple:

det(ϕ) = ϕϕ = ϕϕ = Ω1 + iΩ2 = ρeiβ . (1.91)

So ρ is the modulus and the Yvon-Takabayasi β is an argument of the
determinant of ϕ = ϕ(x); hence they depend on x. Moreover, ϕ is invertible
if and only if ρ ̸= 0. The detailed calculation of Jµ and Kµ (see A.4.2) using
ξ1 and η1 gives

J = Jµσµ = ϕσ0ϕ
† = ϕϕ† ; K = Kµσµ = ϕσ3ϕ

†. (1.92)

We immediately see that these two space-time vectors, which were known to
be orthogonal and with opposite scalar squares, are now part of a (D0, D1,
D2, D3) list – attention, please, as this is a major change in the Dirac theory,
first obtained by D. Hestenes [75] – formed by four space-time vectors:

D0 := J ; D1 := ϕσ1ϕ
† ; D2 := ϕσ2ϕ

† ; D3 := K. (1.93)

21. It is the same for any quantity of the kind ψψ, which are thus not general, despite
the opinion of many physicists [68]. The preferred argument, based on the dimension of
the linear space of Dirac matrices, with dimension 16 on the complex field, has no reason
to apply here since the tensor densities are real ones. This 16 is actually a difference
between triangular numbers (36−10−10, where 36 = 9×8/2, 10 = 5×4/2). The numerous
studies based only on these 16 densities [10][93][104] miss an essential point. Moreover,
the tensor densities without derivatives are not the only important densities in the Dirac
theory. Some others with derivatives are used, while others were still misunderstood [51].
Worse yet, the list of the tensor densities which exist from the electron wave is infinite
[16]. Hence we cannot know everything about these tensor densities.
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The components of D1 and D2 (since not gauge-invariant) cannot be linear
combinations of the 16 densities known through the old formalism of 4 ×
4 complex matrices. We must then consider this formalism as seriously
incomplete, weak, misleading. On the contrary, and more helpful than just
the simplification of calculations, the shift to Cl3 allows us to discover new
quantities which will prove very useful in the next chapters.

For any similitude R defined by a dilator M , the four vectors Dµ trans-
form similarly:

D′
µ = ϕ′σµϕ

′† = (Mϕ)σµ(Mϕ)† =Mϕσµϕ
†M† =MDµM

†. (1.94)

We recall that in relativistic physics the tensors are defined and classed by
the way that they transform in a Lorentz transformation. We then have no
reason to be concerned by D0 and D3, and no reason to deny the possibility
of the existence of D1 and D2. The four Dµ vectors transform like the space-
time vector x. We then say they are contravariant. They are also vectors
of the same length. Moreover, they are orthogonal to each other and form
a mobile basis of space-time with

2Dµ ·Dν = DµD̂ν +DνD̂µ = ϕσµϕ
†ϕ̂σ̂νϕ+ ϕσνϕ

†ϕ̂σ̂µϕ

= ϕσµρe
−iβ σ̂νϕ+ ϕσνρe

−iβ σ̂µϕ = ρe−iβϕ(σµσ̂ν + σν σ̂µ)ϕ = ρe−iβϕ2δµνϕ

= 2δµνρe
−iβϕϕ = 2δµνρe

−iβρeiβ ; Dµ ·Dν = δµνρ
2. (1.95)

Of course since here we use the space-time of special relativity with the
choice of a + sign for time, we have

δ00 = 1 ; δ11 = δ22 = δ33 = −1 ; δµν = 0 , µ ̸= ν. (1.96)

Among these ten relations (1.95), only three were known from the old for-
malism:

J · J = ρ2 ; K ·K = −ρ2 ; J ·K = 0. (1.97)

Now for the tensor densities Sµν , we let:

S3 := S23σ1 + S31σ2 + S12σ3 + S10iσ1 + S20iσ2 + S30iσ3. (1.98)

And we proved (see details in A.4.3) that

S3 = ϕσ3ϕ. (1.99)

We can see immediately that S3 is one of the four:

Sµ := ϕσµϕ, µ = 0, 1, 2, 3. (1.100)

So now we have met S0, which will be called a1, since (see A.4.1):

a1 := S0 = ϕσ0ϕ = ϕϕ = ρeiβ = det(ϕ). (1.101)
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With the four contravariant vectors Dµ which each have four components,
together with S0 which has two, and the three Sj , j = 1, 2, 3 which each have
six components, we count 36 tensor densities without a derivative. This is
much more than the 16 known from the old Dirac theory, and is evident
proof of the incomplete character of the old formalism. We may notice that
this 36 is, like 16, a square, but this is a numerical coincidence because 36
is actually a triangular number: in Clifford algebras the triangular numbers
n(n−1)/2 often appear. Since the right and left spinors forming the electron
wave are the fundamental quantities (and we will see this by the study of
weak interactions in the following chapter), the true counting is as follows:
with each spinor, the right one R1 and the left one L̂1 in (1.68), we obtain
4× 5/2 = 10 = 4 + 6 densities. Four of them form a space-time vector, the
6 = 3 × 4/2 others form a space-time bivector. With the right spinor, the
vector D1

R and the bivector S1
R satisfy [29]:

D1
R := R1R̃1; S1

R := R1σ1R
1
. (1.102)

With the left spinor of the electron, the vector D1
L and the bivector S1

L

satisfy
D1

L := L1L̃1; S1
L := L1σ1L

1
. (1.103)

In his theory of the magnetic monopole, G. Lochak was the first to notice the
fundamental role of the left and right currents [84, 85, 86, 87, 88, 89, 90, 91].
These currents have a zero scalar square; they are on the light cone because:

0 = R1R
1
= R

1
R1 = R̃1R̂1 = R̂1R̃1,

0 = L1L
1
= L

1
L1 = L̃1L̂1 = L̂1L̃1,

D1
R ·D1

R = D1
RD̂

1
R = R1(R̃1R̂1)R

1
= 0, (1.104)

D1
L ·D1

L = D1
LD̂

1
L = L1(L̃1L̂1)L

1
= 0.

Hence in the wave with spin 1/2 some of the quantities always have prop-
erties of light, even at small velocity, and also for an electron at rest. For
this reason the approximation (1.16) which suppresses the relativistic invari-
ance is nonsense from the point of view of high-energy physics. Moreover
a complex number, however small its modulus may be, may be written in
trigonometric form with an argument which can be the phase of a wave.
Only zero has no argument.

The J current and the K current are the sum and difference of the chiral
(right and left) currents, and the bivectors S1 and S2 are also combinations
of S1

R and S1
L:

J = D0 = D1
R +D1

L; K = D3 = D1
R −D1

L, (1.105)

S1 + iS2 = 2S1
R; S1 − iS2 = 2S1

L; S
1
R = R1σ1R

1
; S1

L = L1σ1L
1
. (1.106)
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We derived in [50] the following relation, which will be generalized in the
subsequent chapters:

ρ2 = a1a
∗
1 = 2D1

R ·D1
L. (1.107)

Because we have

J · J = (D1
R +D1

L) · (D1
R +D1

L)

= D1
R ·D1

R + 2D1
R ·D1

L +D1
L ·D1

L = 2D1
R ·D1

L, (1.108)

R̃1L̂1 = a∗1
1 + σ3

2
; L̃1R̂1 = a∗1

1− σ3
2

,

and also

2D1
R ·D1

L = D1
RD̂

1
L +D1

LD̂
1
R = R1R̃1L̂1L

1
+ L1L̃1R̂1R

1
(1.109)

= R1a∗1
1 + σ3

2
L
1
+ L1a∗1

1− σ3
2

R
1

= a∗1(R
1L

1
+ L1R

1
) = a∗1a1 = ρ2.

Besides tensor densities coming from one of the two spinors, we have 16
densities that come from the two spinors, the right one and the left one.
This 16 = 24 was the (wrong) maximum number of tensor densities allowed
by the old Dirac formalism with complex matrices. Here comes the well
known 24 = 1+4+6+4+1 of Pascal’s triangle. The 1+1 of the extremities
gives a1, the 4+4 gives the vectors D1 and D2, and the 6 is the number of
components of S3:

a1 = S0 = R1L
1
+ L1R

1
; S3 = R1L

1 − L1R
1
,

D1 + iD2 = 2R1σ1L̃1; D1 − iD2 = 2L1σ1R̃1. (1.110)

The use of Cl3 is absolutely necessary because only the construction of the
tensor densities from Cl3 may be generalized, and we will do this in the next
chapter. 22 We will see the importance of the (D0, D1, D2, D3) orthogonal
basis in Chapter 4. Many other densities may also be useful in the Dirac
theory, for instance the densities with first derivatives used in the study of
the energy–momentum.

1.3.3 Relativistic transformation of the densities

We already explained how the Dµ vectors transform: they are contravari-
ant vectors (D′ =MDM†). Moreover, these formulas of transformation are

22. Otherwise R. Boudet and D. Hestenes made too much use of the mobile orthonormal
basis (e0, e1, e2, e3) such as Dµ = ρeµ [5] [75]. Consequently they have not seen the
similarity between the four Dµ and the four Sµ.
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automatically induced by the transformation of the ϕ wave. Next, in the
similitude R induced by any fixed dilator M , the four Sµ quantities become

S′
µ = ϕ′σµϕ

′
=MϕσµMϕ =Mϕσµϕ M =MSµM. (1.111)

Since physics characterizes the tensors by their transformation under a
change of reference frame, we see no necessity in distinguishing the different
Dµ vectors which transform similarly whether or not they are invariant in
the electric gauge. The same situation happens for the different Sµ quanti-
ties. For instance we get:

ρ′eiβ
′
= S′

0 =MS0M =MρeiβM = ρeiβMM = ρeiβreiθ,

ρ′ = rρ ; β′ = β + θ. (1.112)

If we restrict the similitudes to only be Lorentz transformations then ρ is
invariant, not β. Even in the case where det(M) = 1 we may have β′ = β+π.

Numerous relations exist between the 36 tensor densities that are de-
pendent on the only eight real parameters of the ϕ wave (see A.4.6). The
number 36 is also the result of restrictions for any other possibility: products
like R1R1 or R1R̂1 cannot transform relativistically, because the multiplica-
tion by M† on the right side is not available. And several products cancel,
for instance R1L1†.

The equalities in (1.111) are entirely new in the physics of tensors,
completely different from the relations for the transformation of antisym-
metric tensors of rank 2, which should give: S′ρσ = Rρ

µR
σ
νS

µν . Since Rν
µ is

quadratic in M and multiplies each space-time length by r, the presence of
two R factors implies a multiplication by r2, while (1.111) is quadratic in M
and thus multiplies the lengths only by r. Moreover, the J and K currents
are perfectly similar since they are simply the sum and difference of the left
D1

L and right D1
R currents. But the old formalism of 4×4 complex matrices

considers J as a space-time vector and K as a pseudovector in space-time,
which is wholly inconsistent: D1

R and D1
L have of course the same geometric

status, they are both contravariant vectors. J and K are also contravariant
vectors, necessarily. This is a sufficient reason to only use the framework of
the Clifford algebra Cl3.

Hence the old and the new formalism – the former one with 4×4 complex
matrices and ours using Cl3 – are not at all equivalent. Only the Cl3 algebra
is complete and we will use this framework as the true one from now on.

1.4 The invariant form of the Dirac equation
The form invariance of the wave equation of the electron uses the dif-

ferential operator ∇ = M∇′M̂ . Since ϕ′ = Mϕ implies ϕ ′ = ϕ M , the
factor M on the left side indicates a possible multiplication of the wave
equation on the left side by ϕ. When and where ρ ̸= 0 (and only in this
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case), ϕ = ϕ(x) is invertible. Hence by multiplying on the left side by ϕ the
Dirac equation is equivalent to

0 = ϕ(∇ϕ̂)σ21 + ϕqAϕ̂+mϕϕ. (1.113)

We consider this equation as the true Dirac equation and we now explain
why this form is “the invariant form of the Dirac equation”: In a Lorentz
similitude R defined by a dilator M in Cl3 satisfying (1.34), we get (1.60)
and (1.62), which imply that if we conserve the gauge invariance:

ϕ(∇ϕ̂)σ21 = ϕ(M∇′M̂ϕ̂)σ21 = ϕ ′(∇′ϕ̂′)σ21, (1.114)

ϕqAϕ̂ = ϕ Mq′A′M̂ϕ̂ = ϕ ′q′A′ϕ̂′. (1.115)

The two left terms of (1.113) are then form-invariant, and the mass term is
also invariant if we have

mϕϕ = m′ ϕ ′ϕ′ = m′ ϕ MMϕ = reiθm′ ϕϕ, (1.116)

which is equivalent to:
m = reiθm′. (1.117)

Of course if we restrictM to det(M) = 1 we havem = m′. But we must take
caution that for the extended invariance the proper mass is no longer invari-
ant. This is an important change in our habits: it is well known that the
quantum wave is necessarily invariant under the Poincaré group formed by
all transformations of the complete Lorentz group, plus space-time transla-
tions. But the Dirac equation is form-invariant only under these translations
and transformations of the restricted Lorentz group. The similitude group
also does not change the orientation of space and the orientation of time.
Thus this group does not contain the totality of the Poincaré group, and
theorems based on properties of the Poincaré group cannot apply here. But
of course the proper mass remains invariant so long as the transformation
belongs to the Poincaré group (r = 1). Yet no longer is the proper mass
invariant when the transformation does not belong to this group (r ̸= 1).
The mass term reads:

mϕϕ = mΩ1 + imΩ2, (1.118)

and is hence the sum of a scalar and a pseudoscalar. The second term
of the invariant Dirac equation (1.113) shows another peculiarity: it is a
space-time vector that we have calculated in (B.32):

ϕAϕ̂ = AνD
ν
µσ

µ = Vµσ
µ; Vµ = AνD

ν
µ = A ·Dµ. (1.119)

This gives also:
ϕσν ϕ̂ = Dν

µσ
µ. (1.120)
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Only the first term of (1.113) is a general term in Cl3, but we can also
obtain some properties with

ϕ(∇ϕ̂) = 1

2
[ϕ(∇ϕ̂) + (ϕ∇)ϕ̂] +

1

2
[ϕ(∇ϕ̂)− (ϕ∇)ϕ̂], (1.121)

1

2
[ϕ(∇ϕ̂) + (ϕ∇)ϕ̂] =

1

2
∂ν(ϕσ

ν ϕ̂) =
1

2
∂ν(D

ν
µσ

µ) =
1

2
(∂νD

ν
µ)σ

µ

=
1

2
(∇ ·Dµ)σ

µ = v = vµσ
µ; 2vµ = ∇ ·Dµ, (1.122)

1

2
[ϕ(∇ϕ̂)− (ϕ∇)ϕ̂] = iw = iwµσ

µ, (1.123)

where v and w are two space-time vectors since v† = v and (iw)† = −iw.
This gives

ϕ(∇ϕ̂)σ21 = (v + iw)σ21

= (v0 + v1σ
1 + v2σ

2 + v3σ
3 + iw0 + w1iσ

1 + w2iσ
2 + w3iσ

3)(iσ3)

= −w3 + v2σ
1 − v1σ

2 − w0σ3 + i(v3 + w2σ
1 − w1σ

2 + v0σ
3). (1.124)

Hence the decomposition of the invariant form (1.113) of the Dirac equation
in the basis (1, σ1, σ2, σ3, i, iσ1, iσ2, iσ3) of Cl3 yields this system of eight
real equations:

0 = −w3 + qA ·D0 +mΩ1, (1.125)

0 =
1

2
∇ ·D2 + qA ·D1, (1.126)

0 = −1

2
∇ ·D1 + qA ·D2, (1.127)

0 = w0 + qA ·D3, (1.128)

0 =
1

2
∇ ·D3 +mΩ2, (1.129)

0 = −w2, (1.130)
0 = w1, (1.131)

0 =
1

2
∇ ·D0. (1.132)

The first equation is exactly the equation of the Lagrangian density L = 0
because of the following (the detailed calculation is in B.1.4):

L =
1

2

[(
ψγµ(−i∂µ + qAµ)ψ

)
+
(
ψγµ(−i∂µ + qAµ)ψ

)†]
+mψψ

= −w3 + qA ·D0 +mΩ1. (1.133)

We know that by varying the Lagrangian density L we obtain the Dirac
wave equation. Moreover the fact that the Dirac equation is homogeneous 23

23. Wave equations in quantum mechanics are linear. They are thus additive, which
means if ϕ1 and ϕ2 are two solutions of the wave equation then ϕ1+ϕ2 is also a solution.
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implies that L = 0 when the wave equation is satisfied. Here we have exactly
the reciprocal situation; the equation L = 0 is one of the eight real equations
equivalent to the wave equation, and the Lagrangian formalism is an
automatic consequence of the wave equation.

Any law of movement, in classical mechanics and in electromagnetism,
may be obtained from a Lagrangian formalism. We now know that this
results from the Lagrangian form and the universality of quantum mechan-
ics. But where does it come from that quantum mechanics has a Lagrangian
form? Here we see that this is completely automatic because the Lagrangian
density is the scalar part of the wave equation, and because this Lagrangian
density yields anew the whole wave equation. We will detail in Chapter 2
how the single equation of the scalar part gives once again the seven other
real equations, not from a physical principle above the differential laws but
simply as a consequence of the algebraic structure due to the geometry of
space-time. Moreover the four real equations containing the symmetric part
v of ϕ(∇ϕ̂) are with the Dµ of (1.93) (see A.4.2):

0 = ∇ ·D0, (1.134)
0 = ∇ ·D3 + 2mΩ2, (1.135)
0 = ∇ ·D1 − 2qA ·D2, (1.136)
0 = ∇ ·D2 + 2qA ·D1. (1.137)

The equation (1.134) which is known as the law of conservation of the
probability current, is now exactly one of the eight real equations equivalent
to the Dirac equation. Next (1.135) is known as Uhlenbeck-Laporte relation.
The real equations (1.136) and (1.137) show that the space-time vectors
D1 and D2 are not gauge-invariant; the gauge transformation operates a
rotation in the plane of D1 D2.

1.4.1 Charge conjugation

Many years after the discovery of the electron, the positron was also
discovered. The only difference between electron and positron is the charge
sign: negative for the electron, positive for the positron. From the Dirac
wave of the particle (1.2) (where the wave of the electron is denoted as ψe

and the wave of the positron is denoted as ψp), quantum mechanics derives
the wave equation of the antiparticle as follows. The complex conjugation
is used on the Dirac equation:

0 = [γµ∗(∂µ − iqAµ)− im]ψ∗
e . (1.138)

And they are homogeneous, which means that if ϕ is a solution of the wave equation and
if z is any fixed number, then zϕ is also a solution of the wave equation. Beware! The
word “homogeneous” here has its usual meaning in mathematics and has nothing to do
with the consideration of dimensions in physics. Additivity and homogeneity together
make up the linearity of the wave equation.
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Since (1.4) gives γ2γµ∗ = −γµγ2, µ = 0, 1, 2, 3, by multiplying (1.138) by
iγ2 on the left side, we get

0 = −[γµ(∂µ − iqAµ) + im]iγ2ψ
∗
e . (1.139)

Then up to an arbitrary phase, quantum mechanics supposes 24 :

ψp = iγ2ψ
∗
e , (1.140)

which gives

0 = [γµ(∂µ − iqAµ) + im]ψp. (1.141)

This equation is exactly the same as the equation of the electron up to the
change of the sign of the electric charge. We automatically obtain the equal-
ity between the mass of the particle and the mass of the antiparticle. Using
the decomposition of ψ with left and right waves, and assigning e indices
for the electron and p indices for the positron, the link (1.140) between the
electron wave and the positron wave reads:

ξ1p
ξ2p
η1p
η2p

 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



ξ∗1e
ξ∗2e
η∗1e
η∗2e

 . (1.142)

This gives

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e. (1.143)

Now the same calculation in space algebra, and always with e indices for
the electron and p indices for the positron, uses:

ϕ̂e =
√
2

(
η1e −ξ∗2e
η2e ξ∗1e

)
; ϕ̂p =

√
2

(
η1p −ξ∗2p
η2p ξ∗1p

)
. (1.144)

Then (1.140), which is equivalent to (1.143), is also equivalent to

ϕ̂p = ϕ̂eσ1; ϕp = −ϕeσ1. (1.145)

Once again we must recall that the charge conjugation described here is
completely equivalent to the charge conjugation described by all textbooks
of quantum physics. Only the style of writing is changed.

24. Quantum mechanics uses γ2 because it is the only Dirac matrix with imaginary
terms while the three other γµ matrices are real, given (1.4). Moreover the relation
(1.140) is, by (1.7), independent from the choice of the γµ matrices.
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1.5 Improved invariant equation
We now come to our main departure from the Dirac theory which un-

derlies all the relativistic components of the Standard Model. This change
is also the main difference from Hestenes’ work. He always used the linear
Dirac equation, and only changed the framework and the presentation of
this equation. Here we change the wave equation itself. It can be
seen from equations in (1.89) that the invariant form of the Dirac equation
(1.113) is given by

0 = ϕ(∇ϕ̂)σ21 + ϕqAϕ̂+mρ cos(β), (1.146)

The improvement that we introduced in [12] was the elimination of cos(β)
and now we add the replacement of the scalar mass term m by a matrix
term m [43] [44]:

0 = ϕ(∇ϕ̂)σ21 + ϕqAϕ̂+mρ; m =

(
l 0
0 r

)
(1.147)

where l is the left mass term and r is the right mass term. The existence
of two possibly different masses will be corroborated by their consequences.
This improved equation is equivalent to the system of real equations:

0 = −w3 + qA ·D0 +maρ; ma :=
l+ r

2
(1.148)

0 =
1

2
∇ ·D2 + qA ·D1, (1.149)

0 = −1

2
∇ ·D1 + qA ·D2, (1.150)

0 = w0 + qA ·D3 + dρ; d :=
l− r

2
(1.151)

0 =
1

2
∇ ·D3, (1.152)

0 = −w2, (1.153)
0 = w1, (1.154)

0 =
1

2
∇ ·D0. (1.155)

This is actually a simplification since three of the eight equations equivalent
to the Dirac equation have been simplified: In the first line the invariant
mΩ1 = mρ cos(β) is simply replaced by maρ (where ma is the arithmetic
mean). The fourth equation (1.151) now has a dρ term and becomes very
similar to the first equation. This new and apparently slight modification to
the Dirac theory does not change five of the eight equations. Nevertheless
this slight simplification improves many things: the last change, in (1.152),
means the existence of a second conservative current, the K = D3 current.
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Since J and K currents are now both conservative, their sum and difference
are also conservative 25 : the D1

R and D1
L chiral currents are conservative.

This will be generalized for the electroweak domain. Moreover the eight
equations come two by two. This is a mere consequence of the left–right
structure of the wave.

For a comparison between our new improved equation and the Dirac
equation it is enough to multiply (1.147) by ϕ

−1
on the left side, which

gives
0 = ∇ϕ̂σ21 + qAϕ̂+ ρϕ

−1
m. (1.156)

We implicitly supposed, when multiplying on the left side by ϕ
−1

, that ϕ
was invertible, which means ρ ̸= 0. Then a unique element Mϕ exists in
SL(2,C) satisfying:

ϕ =
√
ρeiβ/2Mϕ; ϕ =

√
ρeiβ/2Mϕ =

√
ρeiβ/2M−1

ϕ . (1.157)

Actually Mϕ is an element of SL(2,C), since we have

detϕ = ρeiβ = ϕϕ =
√
ρeiβ/2Mϕ

√
ρeiβ/2Mϕ = ρeiβMϕMϕ,

1 =MϕMϕ = det(Mϕ); Mϕ =M−1
ϕ . (1.158)

The existence of this Mϕ element of SL(2,C) was obtained by G. Lochak
as early as 1956 [92] and was obtained independently by Hestenes ten years
later [73]. This Mϕ was also the starting point of the work of R. Boudet
[5][6]. None of these physicists saw the difference between the field of dilators
ϕ (similar to M in 1.1.2) and the field of the induced similitudes (like R).
We also get

ϕ
−1

=
e−iβ/2

√
ρ

Mϕ; ρϕ
−1

=
√
ρe−iβ/2Mϕ = e−iβϕ. (1.159)

Then when we compare with the former Dirac equation, the improved equa-
tion appears not with a term less, but with an additional term e−iβ :

0 = ∇ϕ̂σ21 + qAϕ̂+ e−iβϕm. (1.160)

The usual Dirac equation (1.2) is thus the linear approximation of our im-
proved equation (1.160) when the Yvon-Takabayasi β angle is null or neg-
ligible and when the difference d between left and right mass terms is null.

25. The conservation of the left and right currents was obtained as early as 1983 by
Lochak in his theory of the leptonic magnetic monopole [84]–[91], the theory from which
comes our mass term in a particular case, where the Dirac equation is the linear approx-
imation of our equation. Our equation is nevertheless another, distinct wave equation,
because we conserved the electric gauge term of the equation of the electron. This
gauge term is different from the gauge term of Lochak’s monopole. In his theory of the
monopole, the invariance of the electric gauge is only global (weaker) and it is the chiral
gauge that is local (stronger). On the contrary, for our improved equation the electric
gauge is local and the chiral gauge is only global. Since Noether’s theorem requires only
global invariance, our equation, like Lochak’s, has the same conserved currents.
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Henceforth in the succeeding chapters, only the improved equation will be
generalized. The properties of this improved equation are often simpler than
those of the usual Dirac equation, and are closer to physical reality. This is
what we explain now.

1.5.1 Uncrossed form of the wave equation
We incorporate in (1.160) the left and right waves defined in (1.68):

0 = ∇(L̂1 + R̂1)(−iσ3) + qA(L̂1 + R̂1) + e−iβ(R1 + L1)m (1.161)

= (−i∇L̂1 + qAL̂1 + le−iβR1) + (i∇R̂1 + qAR̂1 + re−iβL1).

In this last line, the left bracketed quantity is a matrix with two zeros in its
second column, while the second bracketed quantity is a matrix with two
zeros in its first column. This equation is hence equivalent to the system:

0 = −i∇L̂1 + qAL̂1 + le−iβR1,

0 = i∇R̂1 + qAR̂1 + re−iβL1. (1.162)

And we have:

J = ϕϕ̃ = R1R̃1 + L1L̃1,

ρe−iβ = ϕ̂ϕ̃ = L̂1R̃1 + R̂1L̃1. (1.163)

We now consider the vector v 26 such that:

v :=
1

ρ
J =

1

ρ
(R1R̃1 + L1L̃1). (1.164)

We then get:

vL̂1 =
1

ρ
(R1R̃1 + L1L̃1)L̂1 =

1

ρ
R1R̃1L̂1 +

1

ρ
L1L̃1L̂1 =

1

ρ
R1R̃1L̂1,

R̃1L̂1 = 2

(
ξ∗1 ξ∗2
0 0

)(
η1 0
η2 0

)
=

(
a∗1 0
0 0

)
; a1 = ρeiβ , (1.165)

R1R̃1L̂1 = R1a∗1
1 + σ3

2
= a∗1R

1,

le−iβR1 =
l

ρ
a∗1R

1 =
l

ρ
R1R̃1L̂1 = lvL̂1.

Similarly, we have:

vR̂1 =
1

ρ
(R1R̃1 + L1L̃1)R̂1 =

1

ρ
L1L̃1R̂1

=
1

ρ
L1R̃1L̂1 =

1

ρ
L1a∗1

1− σ3
2

=
a∗1
ρ
L1 = e−iβL1. (1.166)

26. The notation for a vector in space-time is in Roman typeset when using Cl3 and
in bold letters when using Cl1,3.
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Thus the system (1.162) is equivalent to the uncrossed system:

0 = −i(∇+ iqA+ ilv)L̂1,

0 = −i(∇̂+ iqÂ+ irv̂)R1. (1.167)

In this last equation, we used the conjugation P : M 7→ M̂ . It is to be
noted that this system is not completely uncrossed because v is dependent
on both the left and right parts of the wave. If we write this term using the
Yvon-Takabayasi β angle and using the right spinor ξ1 and the left spinor
η1, then we get an equivalent form:

0 = −i(∇+ iqA)η1 + le−iβξ1,

0 = −i(∇̂+ iqÂ)ξ1 + reiβη1. (1.168)

We can use either form since they are equivalent.

1.5.2 Gauge invariance
Since the differential term and the gauge term do not change when we

shift from the usual Dirac equation to the improved equation, and since the
mass term is gauge-invariant, the improved equation is also invariant under
the electric gauge. This gauge is expressed in the Cl3 algebra as:

ϕ 7→ ϕ′ = ϕeiaσ3 ; A 7→ A′ = A− 1

q
∇a. (1.169)

As with the usual Dirac equation, the conservative current linked to the
electric gauge invariance by Noether’s theorem is the J = D0 current. The
first difference introduced by our improved Dirac equation is the status of
this conservation law, which is now one of the eight real equations equiv-
alent to the wave equation in invariant form. The second difference is the
existence, among these eight equations, of another conservation law (1.152)
for the K = D3 current. This current comes from Lochak’s theory of the
magnetic monopole [84]–[91], at the origin of our improved wave equation.
This second conservation law is linked to the global gauge invariance (chiral
gauge):

ϕ 7→ ϕ′ = eiaϕ ; ϕ 7→ ϕ
′
= eiaϕ ; ∂µa = 0, (1.170)

which gives

ρeiβ = ϕϕ 7→ ρ′eiβ
′
= ϕ′ϕ

′
= e2iaϕϕ = ρei(β+2a),

ρ 7→ ρ′ = ρ ; β 7→ β′ = β + 2a. (1.171)

We name this invariance the “chiral gauge” since the generator of the gauge
group is the i which orients space 27 . We will encounter this chiral gauge

27. In Cl3, for any orthonormal (u, v, w) basis, this basis is direct if and only if uvw = i,
and is inverse if and only if uvw = −i (see A.3.1).
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again in the study of weak interactions. It is also the gauge of Lochak’s
magnetic monopole. Since the chiral gauge multiplies ϕ by eia, therefore ϕ̂
is multiplied by e−ia, the ξ spinor that is the left column of ϕ is multiplied
by eia, and η which is the left column of ϕ̂ is multiplied by e−ia [86].

The improved equation has lost the linearity of the usual Dirac equa-
tion because ρ depends on ϕ, and because the determinant which defines
ρ and β is not linear in ϕ. The sum ϕ1 + ϕ2 of two solutions of (1.160) is
not necessarily a solution of (1.160). On the contrary, since the equation is
homogeneous and invariant on the chiral gauge, if ϕ is a solution and if z
is any complex number then zϕ is also a solution of (1.160). This property,
common to the Schrödinger, Klein-Gordon and Pauli equations, is not true
for the Dirac equation with the i which is a 3-vector in Cl3. As we will
see with the Pauli principle, this completely obscures the nonlinearity of
the invariant wave equation, and then induces a false necessity for linearity
in relativistic quantum physics. Moreover, the calculation of interferences
with Young’s slits, for instance, are not made with a single relativistic elec-
tron (the slits should be much narrower). Thus we are in the case where
the approximation by the Pauli equation used by Gondran [94] is perfectly
legitimate.

Indeed the Dirac equation in space algebra contains both ϕ and ϕ̂. And if
we multiply by i we must not forget that î = −i. The isomorphism existing
between Cl3 and M2(C) is only an isomorphism of algebras on the real field,
not on the complex field. The multiplication by i in Cl3, a pseudoscalar
term, does not correspond to the multiplication by i into M2(C). On the
contrary, this multiplication by i corresponds in Cl3 to the multiplication
on the right side by iσ3, a term which is a 2-vector (an oriented area), not
a 3-vector (an oriented volume). Since Cl3 is isomorphic to Cl+1,3 this iσ3
becomes in space-time algebra the γ1γ2 2-vector used by Hestenes [74].

This restricted isomorphism is also the reason for the discordance be-
tween the earlier form of the Dirac equation, using αk and β matrices, and
the Dirac equation in Cl3. The Hamiltonian formalism that we get with
these matrices acts on a wave equation that is not relativistic, and moreover
that is indeed equivalent to the Dirac equation expressed in M4(C) (with
the unique i of quantum mechanics), but it cannot be equivalent to the
Dirac equation expressed in Cl3 or Cl1,3, where the unique i is replaced by
a 2-vector. The unique i of the Dirac theory, commuting with everything,
is proof of the fact that the theory is expressed not in Cl1,3 or Cl3,1 but in
M4(C) which is isomorphic with the Clifford algebras Cl2,3 and Cl4,1, thus
in a space-time with five dimensions. Hence it is the algebra of a space-time
with a non-physical supplementary dimension.

1.5.3 Plane wave

We take again (with the same reservations) the calculation made in 1.3.3
for the usual Dirac equation. Our improved equation is now reduced, for
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A = 0, to
∇ϕ̂+ e−iβϕmσ12 = 0. (1.172)

We consider the same plane wave with the φ phase satisfying

ϕ = ϕ0e
φσ21 ; φ = mgvµx

µ ; v = σµvµ, (1.173)

where v is a fixed reduced velocity (vv̂ = 1) and ϕ0 is also a constant factor,
and hence we get

∇ϕ̂ = σµ∂µ(ϕ̂0e
φσ21) = −mgvϕ̂σ12. (1.174)

Then (1.160) is equivalent to

0 = (−mgvϕ̂+ e−iβϕm)σ12; ϕm = mge
iβvϕ̂, (1.175)

v̂ϕm = mge
iβ v̂vϕ̂ = mge

iβϕ̂, (1.176)

Conjugating we get
vϕ̂m̂ = mge

−iβϕ, (1.177)

which implies

ϕ = eiβvϕ̂
m̂

mg
; ϕ̂ = e−iβ v̂ϕ

m

mg
. (1.178)

We then have:
ϕ = eiβv

(
e−iβ v̂ϕ

m

mg

) m̂

mg
= ϕ

mm̂

m2
g

. (1.179)

Therefore if ϕ0 is invertible we must take:

m2
g = mm̂ = (m+ dσ3)(m− dσ3) = m2 − d2 = lr,

mg =
√
lr. (1.180)

Thus the mass term mg is the geometric mean of the left and right mass
terms (mg < ma if l ̸= r). Multiplying (1.176) by ϕ† on the right side we
obtain:

v̂ϕmϕ† = mge
iβϕ̂ϕ†, (1.181)

v̂(lD1
R + rD1

L) = mge
iβρe−iβ , (1.182)

Ĵ(lD1
R + rD1

L) = mgρ
2 =

√
lrĴJ. (1.183)

Dividing by Ĵ this implies:

lD1
R + rD1

L =
√
lr(D1

R +D1
L), (1.184)

lD10
R + rD10

L =
√
lr(D10

R +D10
L ) =

√
lrρv0. (1.185)

Since D10
R = |ξ11 |2 + |ξ12 |2 > 0, D10

L = |η11 |2 + |η12 |2 > 0,
√
lr > 0 and ρ > 0

we obtain:
l > 0; r > 0; v0 > 0. (1.186)



1.5. IMPROVED INVARIANT EQUATION 57

We thus have, as in the case where l = r:

1 = vv̂ = (v0 − v⃗)(v0 + v⃗) = (v0)2 − v⃗2, (1.187)

v0 =
√

1 + v⃗2. (1.188)

Thus we solve here in the simplest manner the old problem of unphysical
negative energy: the plane wave of the electron may only have positive
energy and positive proper mass (we will see later the question of charge
conjugation). The improved wave equation is thus much better than
the linear Dirac equation: the non-existence of negative energies, never
observed in particle physics, does not need second quantization to find an
explanation.

1.5.4 Extended invariance
We start from the invariant form (1.147). The similitude R induced by

the dilator M with ratio r = |det(M)| satisfies

x′ = R(x) =MxM† , det(M) = reiθ , ϕ′ =Mϕ,

∇ =M∇′M̂ ; qA =Mq′A′M̂. (1.189)

We also have:

ρ′eiβ
′
= det(ϕ′) = det(Mϕ) = det(M) det(ϕ) = reiθρeiβ = rρei(β+θ),

ρ′ = rρ; β′ = β + θ. (1.190)

And we obtain:

0 = ϕ(∇ϕ̂)σ21 + ϕqAϕ̂+mρ = ϕ M∇′M̂ϕ̂σ21 + ϕ Mq′A′M̂ϕ̂+mρ

= ϕ ′(∇′ϕ̂′)σ21 + ϕ ′q′A′ϕ̂′ +mρ. (1.191)

The improved equation is form-invariant under Cl∗3, which is the multiplica-
tive group of the invertible elements of Cl3, if and only if:

mρ = m′ρ′; mρ = m′rρ. (1.192)

We then obtain the form invariance of the wave equation under Cl∗3 =
GL(2,C) if and only if:

m = m′r; l = l′r; r = r′r; ma = m′
ar; mg = m′

gr; d = d′r. (1.193)

These equalities are simpler than the m = m′reiθ that the usual Dirac
equation gives – and this is a powerful argument for our improved equation.

What is the meaning of these equalities for physics? If the true invari-
ance group of the electromagnetic laws is not only the Lorentz group, not
even its covering group, but the stronger Cl∗3 group, similar things must
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happen as when Galilean physics was replaced by relativistic physics, which
put together mass and momentum, electric field and magnetic field. The
proper mass m0 and the density ρ = ||J|| are both invariant under Lorentz
transformations. Under the similitudes induced by any dilator M , we find
that m and ρ are no longer separately invariant, and only their product mρ
remains invariant:

mρ = m′rρ = m′ρ′,

dρ = d′rρ = d′ρ′. (1.194)

Hence only the product of a reduced mass and a ratio of similitude is fully
invariant. And the reduced mass m = m0c/ℏ is proportional to the in-
verse of length in space-time, which means a frequency. Let us consider
an analogy for better understanding: the fact that gravitational accelera-
tion is proportional to the acceleration due to inertia results in a constant
ratio between gravitational mass and inertial mass (and so this ratio may
be put equal to one). This is the starting point of Einstein’s gravitation.
Because when the scale parameter r changes arbitrarily, the ratio between
ρ and 1/m = ℏ/m0c is constant, and this needs the existence of a constant,
which is the Planck constant. We may then say that the existence of
the Planck constant is a consequence of invariance under the Cl∗3
group, which is a greater group than the local invariance group of either
special or general relativity. We will see in the next chapter how the quan-
tization of the action is linked to invariance under Cl∗3, a greater group
than the invariance group of special relativity. From this point of view we
may also say this: the existence of the Planck constant has not been fully
understood. The consideration of a greater invariance group will allow us
to see things differently, and will later allow us in chapter 2 to understand
why the kinetic momentum is quantized with the value ℏ/2.

1.5.5 Normalization of the wave
We start from the improved wave equation with the system in (1.168),

and we use:

J = D1
L +D1

R = ρv; JĴ = ρ2; D1µ
L = η1†σµη1; D1µ

R = ξ1†σ̂µξ1. (1.195)

We may express the Lagrangian density of the improved wave equation as:

L =
m

kl
LL +

m

kr
LR; LL = ℜ[η1†(−i∇+ qA+ lv)η1], (1.196)

LR = ℜ[ξ1†(−i∇̂+ qÂ+ rv̂)ξ1],

where k is a constant which is further explained, because we have:
m

l
η1†lvη1 +

m

r
ξ1†rv̂ξ1 = me−iβη1†ξ1 +meiβξ1†η1

=
m

2
e−iβρeiβ +

m

2
eiβρe−iβ = mρ. (1.197)
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With the covariant derivatives

dLµ := −i∂µ + qAµ + lvµ : dRµ := −i∂µ + qAµ + rvµ, (1.198)

we can express the Lagrangian density as:

L = ℜ
[
− i
(m
kl
η1†σµdLµη

1 +
m

kr
ξ1†σ̂µdRµ ξ

1
)]
. (1.199)

The invariance of the Lagrangian density under the space-time translations,
like in the linear Dirac theory, implies the existence of a conservative energy–
momentum tensor density, Tétrode’s T . Since the wave equation is homo-
geneous the Lagrangian density is null for any solution of the wave equation
and Tétrode’s tensor density is expressed as:

Tµ
ν = ℜ

[
− i
(m
kl
η1†σµdLν η

1 +
m

kr
ξ1†σ̂µdRν ξ

1
)]

− δµνL

= ℜ
[
− i
(m
kl
η1†σµdLν η

1 +
m

kr
ξ1†σ̂µdRν ξ

1
)]
. (1.200)

For a wave with an energy E satisfying

−idL0 η1 =
E

ℏc
η1; −idR0 ξ1 =

E

ℏc
ξ1, (1.201)

we get

T 0
0 = ℜ

[
− i
(m
kl
η1†d0η

1 +
m

kr
ξ1†d0ξ

1
)]

=
E

ℏc

(m
kl
η1†η1 +

m

kr
ξ1†ξ1

)
= E

J0

ℏc
, (1.202)

J : =
m

kl
D1

L +
m

kr
D1

R.. (1.203)

The condition for normalization of the wave function:∫∫∫
dv

J0

ℏc
= 1, (1.204)

is then equivalent to

E =

∫∫∫
dvT 0

0 . (1.205)

The left term of this sum is the total energy E of the electron, which de
Broglie conceived of as a very small clock with frequency E = hν, while the
right term is the sum of the local energy density of the electron. We will see
that this local density is linked to inertia through the Lorentz force. Hence
it is not because we must have a probability that the wave must
be normalized. The physical wave is normalized, always, because the
inertial mass-energy acted on by the exterior forces is equal to the absolute
value of the gravitational mass-energy. So this energy has a determined
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value, not an arbitrary one. The normalization of the electron wave that is
a law in quantum mechanics 28 is thus the equivalence between gravitational
mass and inertial mass, the principle at the basis of general relativity. The
existence of a probability density, for any electron wave and in any possible
case, is not a principle on which any physical theory must be built: It
is simply the necessary equality between inertial mass and gravitational
mass. And this is the same whether for the usual Dirac equation, or for the
improved equation which the usual Dirac equation linearly approximates
[22].

Since Tµ
ν must have the dimension of an energy density, ML2T−2/L3,

and since J has the dimension ℏc/L3 =M/T 2, kJ has dimension: dim(k)M/T 2,
which is the dimension dim(ϕ)2. Then ϕ is without physical dimension if
and only if k has dimension T 2/M . We therefore suppose from now on that
k has this dimension T 2/M .

Normalization obviously applies to the solutions for the hydrogen atom
that we study in Appendix C 29 . Moreover, since the |ψ|2 of the Schrödinger
wave is a particular case of the approximation of the Dirac wave by a part
of its components, the need for normalizing the wave function of an elec-
tron – which is part of the principles of nonrelativistic quantum theory –
follows as in the relativistic case from the equivalence principle. This is
very important for the unification of all interactions, because until now the
existence of probabilities in quantum mechanics was thought of as a meta-
physical principle governing any present and future theory, while in fact this
is only the consequence of the equality between gravitational and inertial
mass. At the same time we understand better why Bohr was able to rebut
all of Einstein’s arguments against Born’s probabilistic interpretation: The
existence of a probability density comes from gravitation.

The probabilities that Einstein was thinking of derive from thermody-
namics, in which case there is not only one particle, but myriads of particles
moving in all directions. Furthermore we used the expression “probability
density” and we carefully avoided the expression “probability of presence.”
The first expression makes sense because the theory of probabilities, like in-
tegral calculus, was developed from the same mathematics, measure theory.
The second expression cannot make sense because any experimental veri-
fication of the probability of presence of the electron-particle, for instance
a probability of 0.1 in a domain D of space, supposes that we can attain

28. This normalization is so important that it was included among the postulates im-
posed on any quantum wave. In fact normalization is allowed by the wave equations but
is not deduced from them. It is the cause of great difficulties, like the collapse of the ψ or
Schrödinger’s dead–living cat. The issue of normalization also precipitated the setback
of de Broglie’s pilot–wave and afterward Bohm’s.

29. We must recall that the density J0 is not equal to the relativistic invariant ρ, which
is the norm of another vector: J0 ̸= J0. It is the time component of a space-time vector.
We also recall that T 0

0 is a component of a nonsymmetric tensor. It is well known that
the integration of the spin 1/2 into relativistic gravitation is only possible with a nonzero
torsion [89] (see also Chapter 4).
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the convergence of statistical frequency at 0.1. And though it is possible to
obtain the statistics from the myriads of photons moving on a single light
wave, it is absolutely impossible to obtain statistics from the single electron
that can occupy an electron wave. It is possible to obtain statistics from
electrons only if we have a great number of them and each one necessarily
has its own particular wave. We can say that the probability of the domain
D is 0.1 if the sum over D of the probability density is 0.1, and this is all
that may be said about the wave of an electron. For a system of electrons
it is necessary to use the Pauli principle that we will study later. Now we
can see why any scientific discussion about probabilities in quantum physics
needs very careful phrasing. A general theoretical discussion about prob-
abilities has little meaning: properties of electrons, each one being alone
on its wave, are radically different from properties of photons which can
move on the same wave. For instance the violation of Bell’s inequalities
was experimentally observed only for photons. For electrons this remains
unproved. Entanglement needs at least two waves.

1.5.6 Charge conjugation
We again begin with ϕp = −ϕeσ1, the link between the wave of the

particle and the wave of the antiparticle in relativistic quantum mechanics.
The improved wave equation (1.160) reads for the particle:

∇ϕ̂eσ21 + qAϕ̂e + e−iβeϕem = 0. (1.206)

We also have
ρee

iβe = ϕeϕe. (1.207)

This then gives:

ρee
iβe = ϕeϕe = ϕp(−σ1)(ϕ̂pσ1)† = −ϕpϕp = −ρpeiβp . (1.208)

Therefore (1.206) takes the form:

∇ϕ̂pσ1σ21 + qAϕ̂pσ1 + (−e−iβp)(−ϕpσ1m) = 0. (1.209)

Multiplying on the right side by σ1, this is equivalent to

0 = −∇ϕ̂pσ21 + qAϕ̂p + e−iβpϕpm̂,

0 = ∇ϕ̂pσ21 − qAϕ̂p − e−iβpϕpm̂. (1.210)

Next, multiplying on the left side by ϕp, we get the invariant wave equation
of the antiparticle:

0 = −ϕp∇ϕ̂pσ21 + qϕpAϕ̂p + m̂ρp,

0 = ϕp∇ϕ̂pσ21 − qϕpAϕ̂p − m̂ρp (1.211)
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The first equation means that the lone differential term of the wave equation
changes sign. This was the reason for Feynman [69] to interpret charge
conjugation as parity–time (PT) symmetry. The second equation means
that the charge term changes sign, and that the mass term is changed in
a way that the arithmetic average m = (r + l)/2 changes sign while the
difference l − r remains unchanged, so we can say that the role of left and
right parts are exchanged. Next we are able to recast the previous equations
as:

0 = ∇ϕ̂pσ12 + qAϕ̂p + e−iβpϕpm̂. (1.212)

Plane wave

The improved wave equation is reduced, if A = 0, to:

0 = −∇ϕ̂p + e−iβpϕpm̂σ12. (1.213)

We consider a solution such as:

ϕp := ϕ0e
φpσ21 ; φp := mgvpµx

µ; vp := −v. (1.214)

We obtain the same results as in 1.5.3 :

mg =
√
lr; v0 =

√
1 + v⃗2. (1.215)

v0p = −
√

1 + v⃗2p (1.216)

Hence we again obtain plane wave solutions with a negative time coefficient,
necessary for Fourier transformation and for very small wave packets, but
with a positive mass-energy, in accordance with experiment. Created with
the same energy, the electron and positron are moving with opposite velocity
vectors, which is also in accordance with experiment.

Numeric equations

Multiplying on the left side by ϕp we get the invariant wave equation:

0 = ϕp∇ϕ̂pσ12 + qϕpAϕ̂p + m̂ρp; m̂ =

(
r 0
0 l

)
. (1.217)

Nonrelativistic quantum mechanics, using a single i, could not truly under-
stand charge conjugation, which simply changes the sign of the σ21 = σ2σ1
term into σ12 = σ1σ2 and the sign of the difference d. The first change
of sign is thus only a change of direction in the series of σk, which is also
a change of orientation, the left wave becoming right and conversely, and
changing also the sign of d. Instead of the system of the eight equations of
the particle, we now have the same system, albeit one where the components
of all ∂µ and d change sign:

0 = w3 + qA ·D0 +maρ, (1.218)



1.5. IMPROVED INVARIANT EQUATION 63

0 = −1

2
∇ ·D2 + qA ·D1, (1.219)

0 = +
1

2
∇ ·D1 + qA ·D2, (1.220)

0 = −w0 + qA ·D3 − dρ, (1.221)

0 = −1

2
∇ ·D3, (1.222)

0 = w2, (1.223)
0 = −w1, (1.224)

0 = −1

2
∇ ·D0. (1.225)

Charge conjugation changes the sign of the charge and the sign of chiral
masses, because we cannot change the arrow of time nor the orientation of
space [59]. Actually, only the differential terms of the wave equations and
d change sign. The electric gauge invariance is now obtained as:

ϕp 7→ ϕ′p = ϕpe
iaσ3 , (1.226)

A 7→ A′ = A− 1

q
(−∇a) = A− 1

−q
∇a.

Thus the positron seems to have a charge opposite to that of the electron.
But in fact it is not q but ∂µa that changes sign. And so only ∂µ, vµ, wµ

and d change sign. With the covariant derivatives

d
R

µ = i∂µ + qAµ + rvµ; d
L

µ = i∂µ + qAµ + lvµ, (1.227)

we can express the Lagrangian density as:

L = ℜ
(m
kr
η1†p σ̂

µd
R

µ η
1
p +

m

kr
ξ1†p d

L

µσ
µξ1p

)
. (1.228)

The normalization of the wave is thus, always given a stationary state,
equivalent to: ∫∫∫

dvT 0
0 = −E. (1.229)

The positive mass-energy of the positron is exactly the opposite of the nega-
tive energy-coefficient of the stationary wave. The improved wave equa-
tion thus resolves the problem of the energy sign in a way that is
much easier to understand than second quantization: we have the
negative coefficients −|E| necessary to obtain the Fourier transformation,
and the true energy density is the T 0

0 component of the energy–momentum
that remains positive. Since the wave equation of the antiparticle is ob-
tained from that of the particle simply by changing ∂µ into −∂µ and d into
−d, which also result from the PT transformation, the CPT theorem of
quantum field theory is trivial. Therefore, charge conjugation is the purely
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quantum and purely relativistic phenomenon of a wave which in a sense sees
space-time upside down. This was the point of view of Feynman [69]. And
since the usual Dirac equation is the linear approximation of our improved
equation, we derive the Dirac equation of the positron from the improved
equation of the positron by changing the mass term: we must account for
the fact that βp = βe + π and that Ω1e = −Ω1p. The linear approximation
of the improved wave equation of the positron satisfies m = l = r, which
implies:

0 = −ϕp∇ϕ̂pσ21 + qϕpAϕ̂p −mΩ1p, (1.230)

0 = −∇ϕ̂pσ21 + qAϕ̂p −mϕp,

0 = ∇ϕ̂pσ21 + (−q)Aϕ̂p +mϕp. (1.231)

This is precisely the Dirac equation of the positron, with the charge appear-
ing with a changed sign. We have, for the sign of E and of T 0

0 , the same
results as with the improved equation: E is negative while T 0

0 is positive.

1.5.7 The hydrogen atom
Early quantum mechanics obtained the quantization of the energy levels

by solving the Schrödinger equation in the case of the hydrogen atom, an
electron “revolving” around a proton. Obtaining the quantization was a
brilliant result. But the other results were not as good. For instance the
energy levels were not very precise. And the total number of quantum states
for the principal quantum number n was thought to be n2 when the actual
number should be 2n2 states.

The detailed calculation using our improved equation is presented in Ap-
pendix C. This calculation is quite different from the one used in the early
years of quantum mechanics. At that time the theory of proper values and
proper vectors in Hermitian spaces was developed mainly for application to
the angular momentum operators. Bohr understood the Mendeleev periodic
table by counting all possible values of the angular momentum of atomic
electron particles. This gave Bohr the expected energy levels k/n2, but not
the expected number of states. Next Sommerfeld looked into relativistic
dynamics of particles to obtain more states, as well as the fine structure
of atomic spectral lines. Quantum mechanics replaced this counting with
the calculation of solutions of the electron wave equation, which are proper
vectors of operators with the same algebraic properties as classical angular
momentum. Using the Schrödinger wave equation, only Bohr’s model was
reproduced. The relativistic Klein-Gordon equation was able to obtain the
second quantum number introduced by Sommerfeld, but not with the cor-
rect values, because integer numbers (0, 1, 2, ...), which are the only possible
values with angular momentum operators, must be replaced by half-integer
values (1/2, 3/2, 5/2, ...) to account for spectroscopic lines. This profound
divergence between theory and experiments on light led to the hypothesis
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of the spin of the electron, and thus the Pauli wave equation and finally
the Dirac equation. Only this relativistic equation was able to obtain the
true quantum numbers and energy levels in the case of the hydrogen atom.
The set of adequate solutions was obtained by C.G. Darwin immediately
after the discovery of the wave equation by Dirac, using kinetic momentum
operators that issued from the Pauli equation.

As for us, we use a completely different method obtained by H. Krüger
[81], a marvelous classical one from the mathematical point of view, sepa-
rating the variables in spherical coordinates (r, θ, φ). A new calculation is
made in Appendix C to account for left and right mass terms. The principal
quantum number n remains a sum: n = |κ| + n (see [99]); κ is introduced
in the separation between the variables x0 = ct and φ, from the variables θ
and radial r. The study of functions of θ relocates the normalization of the
wave to conditions governing κ and n: κ must be a nonzero integer num-
ber (positive or negative) and n is the degree of the polynomial functions
included in the series expansion of radial functions. It is the necessity of
normalizing the solution of the wave equation that allows us the existence
of a probability density, which gives the κ and n integers, and thus the n
number. The last quantum number, here called λ, is obtained from the sole
condition that the wave must be a well-defined function in space-time, with
unique value in Cl3. There is absolutely no need for operators of angular
momentum, even if the quantity j defined as j = |κ|−1/2 and the quantum
number λ have exactly the same algebraic properties as the l number and
the n number obtained via spherical harmonics of nonrelativistic quantum
mechanics: it is possible to construct operators such that these j(j+1) and
λ are proper values. But each λ is a half-integer, never an integer. Let
us see how, without an integer angular momentum l, the various states are
obtained. 30 Consider for instance the case n = 5, where if κ > 0 we may
have:

1. n = 4 and κ = 1, thus j = 1/2, and 2 states: λ = −1/2 and λ = 1/2.

2. n = 3 and κ = 2, thus j = 3/2, and 4 states: λ = −3/2, −1/2, 1/2 and
3/2.

3. n = 2 and κ = 3, thus j = 5/2, and 6 states: λ = −5/2, −3/2, −1/2,
1/2, 3/2 and 5/2.

4. n = 1 and κ = 4, thus j = 7/2, and 8 states: λ = −7/2, −5/2, −3/2,
−1/2, 1/2, 3/2, 5/2 and 7/2.

5. n = 0 and κ = 5, thus j = 9/2, and 10 states: λ = −9/2, −7/2, −5/2,
−3/2, −1/2, 1/2, 3/2, 5/2, 7/2 and 9/2.

30. The angular momentum l of nonrelativistic quantum mechanics cannot be a con-
stant of the movement in relativistic quantum mechanics. The classification of atoms
should hence never use the integer number l, which is nevertheless always used in course
books on chemistry for the sake of pretty “orbitals” that are far removed from true electron
physics!
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This gives 2 + 4 + 6 + 8 + 10 = 30 = 5 × 6 (more generally n × (n + 1))
states, which are two by two orthogonal (as was already explained by L. de
Broglie in 1934 [54]). Since κ may also be negative, we should get the same
set of quantum numbers, but if n = 0 the states with κ < 0 are exactly the
same as those with κ > 0, and this gives:

6. n = 4 and κ = −1, thus j = 1/2, and 2 states: λ = −1/2 and λ = 1/2.

7. n = 3 and κ = −2, thus j = 3/2, and 4 states: λ = −3/2, −1/2, 1/2 and
3/2.

8. n = 2 and κ = −3, thus j = 5/2, and 6 states: λ = −5/2, −3/2, −1/2,
1/2, 3/2 and 5/2.

9. n = 1 and κ = −4, thus j = 7/2, and 8 states: λ = −7/2, −5/2, −3/2,
−1/2, 1/2, 3/2, 5/2 and 7/2.
This gives 2 + 4 + 6 + 8 = 20 = 5 × 4 (more generally n × (n − 1)) states,
two by two orthogonal and also orthogonal to each state with κ > 0. In the
end, we actually obtain n× (n+1)+n× (n− 1) = 2n2 states that are two
by two orthogonal. Therefore Pauli’s explanation of this number as the n2

from the Schrödinger equation multiplied by the “two values” of the spin,
is nowadays only a tale for children. Unhappily this tale is still a popular
one, because the theory of group representations, for systems of electrons,
uses SU(2) instead of SL(2,C), because this group has no finite-dimensional
unitary representation.

Our study of the solutions of the improved equation indicates that a
family of solutions exists. These solutions are labeled by the same quantum
numbers given by the usual Dirac equation. They are very near the solutions
of the linear equation such that the Yvon-Takabayasi angle is everywhere
defined and small. And if ϕ1 and ϕ2 are two solutions of this family, then
z1ϕ1 and z2ϕ2 are also solutions of the improved equation because it is
homogeneous and invariant under the chiral gauge. But the sum z1ϕ1+z2ϕ2
has no reason to be a solution since the determinant which has the Yvon-
Takabayasi angle as argument is quadratic on the wave, and the angle has
no reason to be small and negligible. The solutions labeled by the quantum
numbers j, κ, λ and n thus give the only stationary states of the hydrogen
atom. This explains why an electron in a hydrogen atom is usually in one
of the labeled states, not in a linear combination of such states. This is
a well-known experimental fact that only the improved equation
explains in a simple way. This improved wave is thus closer to physical
reality than its linear approximation which is the Dirac equation. Our
improved equation is, as far as we know, the only nonlinear wave equation
such that quantized levels of energy may exist with exactly the true energy
levels.

It is well known that the Dirac equation was perfect for the electron,
yet nevertheless two properties were not obtained: the anomalous magnetic
moment and the Lamb shift. We examine now how this effect may be
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integrated to the solutions of our wave equation.

Lamb effect

This effect is a shift between the energy levels predicted as equal by
Sommerfeld’s formula and the Dirac theory, which are observed not equal:
for instance the shift between the 2s1/2 and 2p1/2 states. The biggest
shift is between the 1s1/2 calculated by the Dirac theory and the same
level calculated by quantum field theory [72]. And the improved equation is
actually able to calculate exactly the solutions integrating this effect: for the
1s1/2 states the important shift (8, 2 GHz) between the level calculated by
Sommerfeld’s formula and the observed level is consistent with a value of ν
very close to 1: 1+6.615×10−11. For the 2p1/2 states, whose energy level is
in accordance with Sommerfeld’s formula with n = 1, the value of ν is much
nearer 1, the shift from 1 is only 10−14. To account for the shift between
that states and the 2s1/2, a little upper, the value of ν obtained in C.3 is:
1 + 9.29× 10−12. We may remark that the value of ν verges on 1 when the
quantum number n increases. The shift between l and r is hence very small,
that explains why it was unknown. Even if very small, this shift between ν
and 1, in the case of the ground state where it is maximal, could contribute
to explain the shift between the theoretical value of the anomalous magnetic
momentum with the observed momentum of the electron.

1.5.8 The Pauli principle

The main success of the usual Dirac equation is the calculation of the
electron states in atoms. This calculation alone does not give all that was
predicted by the atomic spectroscopy and by chemistry. There another
principle is used, the Pauli exclusion principle, which says: two electrons
cannot be in the same quantum state characterized by a set of quan-
tum numbers n, κ, j, λ, n. And two distinct solutions of the Dirac equation
for the hydrogen atom are not only normalized, they are moreover orthog-
onal for the Hermitian scalar product of quantum mechanics. This is also
true for the Euclidean scalar product characteristic of real Clifford algebras
(details of this orthonormalization are already in [54], in later books like
[99], and in our own works [14]). We now simply recall how the scalar prod-
uct and the associated norm are linked: the norm of ϕ or of ψ is defined
by integrating the probability density over all space. This integration is
essential for obtaining the quantization of the energy levels:

||ϕ|| = ||ψ|| =
∫∫∫

dv
1

ℏc
J0; J = Jµσµ = ϕϕ†. (1.232)

Any norm on a linear space is associated with a scalar product and, con-
versely, any scalar product defines a norm. For any A and B vectors of the
considered linear space, and with the notation A ·B for the scalar product,
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we have:

||A|| =
√
A ·A; 4(A ·B) = ||A+B||2 − ||A−B||2. (1.233)

This is true for the solutions ϕ+ and ϕ− of the Dirac equation corresponding
to κ > 0 and κ < 0 respectively, for the same set of quantum numbers λ
(magnetic quantum number), j (kinetic momentum of the electron) and n
(degree of the radial polynomial), which are approximations of the solutions
to the improved equation for the hydrogen atom, the functions

ϕ+ =
1√
2
(ϕ+ + ϕ−); ϕ− =

1√
2
(ϕ+ − ϕ−), (1.234)

are exactly those calculated by Darwin in 1928 [11][14]. This property re-
sults from the resolution of the Dirac equation obtained from a set of Dirac
matrices γ′µ as in (1.8). We also recall that our set of γµ matrices is the most
suitable set for weak interactions and high velocity, and also convenient to
find a simple connection between the Pauli algebra and space-time algebra.
We previously saw that for the single-column ψ matrix this is equivalent
to considering sums and differences multiplied by 1/

√
2. The solutions are

normalizable and quantization results from imposing the normalization. So-
lutions indeed exist aside from these normalizable ones, which have all the
required properties. Therefore we can see that quantization of the energy
levels comes from the condition of normalizing the states, which means:

1 = ||ϕ+|| = ||ϕ−||. (1.235)

Since theM = 1√
2
(γ0+γ5) matrix transforming the γµ into the γ′µ is equal to

its inverse, Darwin’s solutions are also sums and differences of our solutions:

ϕ+ =
1√
2
(ϕ+ + ϕ−); ϕ

− =
1√
2
(ϕ+ − ϕ−), (1.236)

The direct and complete proof of the orthogonality of the solutions was
detailed in de Broglie’s first book on the Dirac equation [54]. This proof is
not at all trivial; it studies all cases and exploits the orthogonality of the
Legendre polynomials and Laguerre polynomials. The ϕ+ and ϕ− states
calculated by Darwin have a norm of one and are 2 × 2 orthogonal. The
states that are the linear approximations of the solutions of our improved
equation are the ϕ+ and ϕ− also with norm one and 2 × 2 orthogonal.
The orthogonality of these states is a consequence of the normalization
of Darwin’s states, and similarly the orthogonality of Darwin’s states is a
consequence of the normalization of our solutions. Hence we get:

4ϕ+ · ϕ− = ||ϕ+ + ϕ−||2 − ||ϕ+ − ϕ−||2 = 2||ϕ+||2 − 2||ϕ−||2 = 0. (1.237)

Since the improved equation cannot have other stationary states than those
listed by n, κ, j, λ, n, only those states that are listed are possible. Since
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these states are 2 × 2 orthogonal, the Pauli principle may be so reformu-
lated: two electrons must occupy two orthogonal states for the scalar
product associated with the norm (1.232). Let now ϕ1 and ϕ2 be solutions
of the Dirac equation corresponding to two electrons, with orthogonal and
normalized states with a respective mass-energy E1 and E2. We denote as
J1 and J2 the respective current associated with each solution, and T1 and
T2 the energy–momentum tensor densities associated with each electron.
We then have:∫∫∫

dv
J01
ℏc

= 1;

∫∫∫
dvT1

0
0 = −E1; ϕ1 · ϕ1 = 1, (1.238)

∫∫∫
dv

J02
ℏc

= 1;

∫∫∫
dvT2

0
0 = −E2; ϕ2 · ϕ2 = 1, (1.239)

ϕ1 · ϕ2 = 0. (1.240)

From the bilinearity of the scalar product we get:

(ϕ1 + ϕ2) · (ϕ1 + ϕ2) = ϕ1 · ϕ1 + ϕ2 · ϕ2 = 1 + 1 = 2, (1.241)∫∫∫
dv

J0

ℏc
= 2 =

∫∫∫
dv

J01
ℏc

+

∫∫∫
dv

J02
ℏc
, (1.242)

J0 = J01 + J02; T
0
0 = T 0

10 + T 0
20, (1.243)∫∫∫

dv(T1 + T2)
0
0 =

∫∫∫
dvT 0

10 +

∫∫∫
dvT 0

20 = −(E1 + E2). (1.244)

The Pauli principle then implies that the mass-energy of an electron in
a system is additive, that it is the sum of the energies of the electrons
of this system. This additivity is essential for any theory integrating the
different interactions to gravitation: this allows us to link gravity to the
total mass of a star, both for Newtonian gravitation and for GR. From
E = ℏν, this also allows us to get a quantum wave with a frequency ν
for any system of electrons. When only the electric phase of the wave is
important (low velocity, negligible spin effects), it is then possible to reduce
the quantum wave to a function with value in C. This addition of the
energies is translated into the addition of the phases, and hence into the
product of the corresponding complex numbers. This allows us to express
the Pauli principle as the anti-symmetrization of the product. But this
anti-symmetrization is not general; it is conditioned by the reduction of the
quantum wave to its nonrelativistic approximation.

If we agree that qJ is space-time vector whose time component qJ0 is the
charge density and qJ⃗ is the electric current density, the global condition
(1.242) is sufficient to obtain the electrostatic laws: the electric charge of a
system of n electrons is ne.

We will now see how the anti-symmetrization that is nowadays the usual
presentation of the Pauli principle in quantum mechanics is linked to the
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condition (1.243). Since J is the sum of the right current and the left current
while the wave is also the sum of a right and a left wave, corresponding to
two columns of the same matrix, the additivity of the J current is equivalent
to the additivity of the D1

R and D1
L currents in any point of space-time [31].

Now we detail the case of the right current D1
R: we denote the right currents

as D11
R and D12

R , linked respectively to each electron state. We have:

R11 =
√
2

(
ξ111 0
ξ112 0

)
; R12 =

√
2

(
ξ121 0
ξ122 0

)
. (1.245)

We shall have R1 = R11 +R12 and D1
R = D11

R +D12
R if and only if:

(R11 +R12)(R11 +R12)† = R11R11† +R12R12†, (1.246)

R11R12† = −R12R11† (1.247)

2

(
ξ111 0
ξ112 0

)(
ξ121

∗
ξ122

∗

0 0

)
= −2

(
ξ121 0
ξ122 0

)(
ξ111

∗
ξ112

∗

0 0

)
, (1.248)

which means if and only if the products are antisymmetric:

ξ111 ξ
12
1

∗
= −ξ121 ξ111

∗
; ξ112 ξ

12
1

∗
= −ξ122 ξ111

∗

ξ111 ξ
12
2

∗
= −ξ121 ξ112

∗
; ξ112 ξ

12
2

∗
= −ξ122 ξ112

∗
. (1.249)

This anti-symmetrization, which induces the anti-symmetrization of non-
relativistic quantum mechanics, was here obtained as a consequence of the
additivity of the charge densities and of electric current densities. We may
now reverse the presentation: from the anti-symmetrization of the products
(1.249), which is the Pauli principle of anti-symmetrization, we obtain the
additivity of the right and left currents DR et DL, and thus also both the
additivity of the J current which gives the additivity of the electric cur-
rent, and the additivity of the J current which gives the additivity of the
mass-energy.

About probabilities

The wave equation of the electron is a wave equation for a single object:
the Pauli principle absolutely forbids placing more than one electron on an
electron wave. When physics needs the calculation of the probability of
emission or absorption (a function of time), this includes not only one elec-
tron but a vast number of different electrons, each with an electron wave. A
priori there is no connection between these probabilities and the probability
density J0 (a function of space). If such a connection exists, this must be
proven from the theoretical point of view and validated experimentally by
statistics.
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1.5.9 Iterative form of the improved equation

We calculate Ĵϕ :
Ĵϕ = ϕ̂ϕϕ = ϕ̂ρeiβ . (1.250)

Conjugating we then get

Jϕ̂ = ρe−iβϕ; e−iβϕ =
J

ρ
ϕ̂. (1.251)

With (1.107) and (1.108), we define the unit vector:

v = vµσµ =
J

ρ
; v · v = vv̂ =

JĴ

ρ2
=
ρ2

ρ2
= 1; v̂ = v−1. (1.252)

Similarly we obtain the mass term:

mm̂ =

(
l 0
0 r

)(
r 0
0 l

)
=

(
lr 0
0 rl

)
= m2

g (1.253)

This allows us to express the improved wave equation as follows[50][46]:

ϕ̂ = −v̂(∇ϕ̂σ21 + qAϕ̂)
m̂

m2
g

. (1.254)

Conjugating, this gives the recursive functional equation:

ϕ = f(ϕ); f(ϕ) = −v(∇̂ϕσ21 + qÂϕ)
m

m2
g

. (1.255)

We then get by iterating:

ϕ = f(f(ϕ)); ϕ = f(f(f(ϕ))), . . . (1.256)

To get only multiplication by the left side, we use the uncrossed form (1.167):

i∇η1 = qAη1 + lvη1; i∇η1 = pLη
1; pL := qA+ lv,

i∇̂ξ1 = qÂξ1 + rv̂ξ1; i∇̂ξ1 = p̂Rξ
1; p̂R := qÂ+ rv̂. (1.257)

This gives at the second order:

i∇̂∇η1 = ∇̂(pLη
1); i∇∇̂ξ1 = ∇(p̂Rξ

1). (1.258)

Iterating the wave equation once, we obtain second derivatives, and we then
use the d’Alembert operator:

□ = ∇̂∇ = ∇∇̂ = ∂200 − ∂211 − ∂222 − ∂233. (1.259)

We indeed get:

i□η1 = (∇̂pL)η1 + 2pµL∂µη
1 − p̂L∇η1,

i□ξ1 = (∇(p̂R)ξ
1) + 2pµR∂µξ

1 − pR∇̂ξ1. (1.260)
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We let:
F := ∇Â; Fl := ∇p̂L; Fr := ∇p̂R. (1.261)

This gives

i(□− pL · pL)η1 = F̂lη
1 + 2pµL∂µη

1, (1.262)

i(□− pR · pR)ξ1 = Frξ
1 + 2pµR∂µξ

1. (1.263)

These equations are more similar on the left side, but this is only because the
d’Alembert operator suppresses the difference between ∇̂∇ and ∇∇̂. Two
remarks: these equations are not the Klein-Gordon equations, as in the
linear Dirac equation case, which also gives the Aµ∂µ term. (This fact is
rather well concealed in many books where the second-order wave equation
is given for an electron without interaction, and thus without real physical
existence.) Next, the electromagnetic field is introduced as two chiral fields
Fl and Fr. We have:

∇v̂ = ∇(
Ĵ

ρ
) = ∇(

ρĴ

ρ2
) = ∇(

ρĴ

JĴ
) = ∇(ρJ−1) := G. (1.264)

These fields satisfy

Fl = qF + lG; Fr = qF + rG. (1.265)

1.6 Three generations

Both the wave equation of the electron (1.160) and the wave equation of
the positron (1.212) contain a σjk at the right side of the gradient operator.
This term is not unique but is also physically significant. This factor is
one of six similar σjk = σjσk, j ̸= k terms. First the charge conjugation
divides this number by two, because the wave equation with σkj is used in
the wave equation of the antiparticle. This is the reason for the existence of
three wave equations; the interpretation that is now made is the existence
of three “generations” of fermions: besides electrons there also exist muons
and taus. These waves have very similar properties; in particular they see
the electromagnetic field in exactly the same way:

0 = ∇ϕ̂σ32 + qAϕ̂+ e−iβϕm; 0 = ∇ϕ̂pσ23 + qAϕ̂p + e−iβpϕpm̂. (1.266)

0 = ∇ϕ̂σ13 + qAϕ̂+ e−iβϕm; 0 = ∇ϕ̂pσ31 + qAϕ̂p + e−iβpϕpm̂. (1.267)

The discovery of the muon is now well in the past, yet quantum field theory
still has no simple explanation for either the existence of the muon or of the
tau. No further explanation accounts for why there are only three genera-
tions. Besides, the muon is not an electron: their properties are different.
Meanwhile, we can stress the following point: the third direction with the
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Dirac wave is completely privileged – when the spin of the electron is mea-
sured, this is always made in the third direction. When the solutions for
the hydrogen atom are calculated, these solutions do not have the spherical
symmetry of the potential; they only have an axial symmetry around the
third direction. Of course with equation (1.266) the first direction becomes
the privileged one. And with equation (1.267) the second direction becomes
the privileged one. But this is not the only thing that differs when the
generation changes. For instance as we used σ1 to obtain the charge conju-
gation, then it will be necessary to replace this factor by σ2 for the second
generation and by σ3 for the third generation.

Why has such a simple and evident explanation not come to light much
earlier? The main cause seems to come from nonrelativistic quantum me-
chanics: the ground level of electrons in atoms is viewed as a function with
spherical symmetry. The other states giving the orbitals used by chemistry,
replacing the orbits of Bohr’s atom, are obtained with spherical harmon-
ics. Globally, they have the symmetry of the sphere. Thus the image that
anyone finds in physics textbooks for the structure of an atom is depicted
as electrons revolving in any direction. These images are never presented
like a solar system with planets revolving in the same plane. We now make
three remarks: firstly, in the case of the hydrogen atom, the lowest energy
states for an electron following the Dirac equation do not have spherical
symmetry. For each state a flow of the probability current exists in the
plane orthogonal to the third direction. Secondly, the explanation of the
anomalous Zeeman effect, from the Dirac equation, allows us to exactly ob-
tain the shifting of the energy levels and the intensity of light rays, but only
if the magnetic field is exactly oriented in the third direction. Finally, we
must look at how the isotropy of space is re-established in the Dirac theory:
it is said that the privileged direction is corrected by the fact that this third
direction can be set in any direction of space by an appropriate rotation.
And if we consider a system of electrons such that for each electron the third
axis is set in a direction Ox and an M matrix such as M = eiau, where a is
any real number and u is a unit space vector, then Mσ3M

† will be found in
any direction. But we will also get ϕ′ =Mϕ for all electron states: they will
then have the same axis of symmetry and the whole system will continue
to have cylindrical symmetry, not spherical symmetry.

We now consider a wave following (1.266), with an axis of symmetry in
the first direction. After the rotation defined by M the wave also becomes
ϕ′ = Mϕ, and this axis of symmetry is still orthogonal to the axis of sym-
metry of the electron system. The physical consequence for a muon entering
into an electron system is that this muon is not governed by Pauli’s exclu-
sion principle. The muon does not see the wave of the other electrons – only
their charges. The muon wave is a function of space-time which belongs to
a linear subspace different from the subspace of the electron wave functions,
with an unconditional additivity of the currents (see the Pauli principle in
1.5.8).
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1.7 The numeric–dimension (dinum)
We define the numeric–dimension of a quantity as the power of the ratio

of similitude r in the R transformation of the quantity generated by the
dilator M in Cl3. We abbreviate this as “dinum.”

1. Since ϕ becomes ϕ′ = Mϕ and M =
√
reiθP , where P belongs to

SL(2,C), the dinum of ϕ is 1/2. The dinum of ϕ̂, of ϕ̃ and of ϕ is also 1/2.
The dinum of ϕ−1 is −1/2.

2. Next, a contravariant vector such as x or J = D0 = ϕϕ†, which transforms
into J′ =MJM† has a dinum +1.

3. A covariant vector like ∇ =M∇′M̂ has a dinum −1.

4. Since we have m = m′r and ρ′ = rρ, we may say that ρ has the dinum
1 and m has the dinum −1.

5. Since space and time vary in the same way, any velocity has a zero
dinum.

6. Since an acceleration is the derivative of a velocity its dinum is −1.

7. The electromagnetic potential A, in the second-order equation, is linked
to the J current in a scalar product. This vector must be, like J, a contravari-
ant vector. We may also use the fact that the electromagnetic potential is
linked to its sources, which are the particles having an electric charge (or
other charges: magnetic, strong and so on). Hence A must have a dinum
+1 and must satisfy

A′ =MAM†. (1.268)

8. So that the gauge invariance may be compatible with relativistic invari-
ance, qA must transform like a covariant vector while A is contravariant.
We thus have:

qA =Mq′A′M̂ =Mq′MAM†M̂ = q′reiθAre−iθ = r2q′A,

q = q′r2; q′ = qr−2. (1.269)

The dinum of q is thus −2. We may remark that m and q do not have
the same dinum. This is an important difference between mass and charge
which have the same status in relativistic invariance but not in the extended
invariance under Cl∗3.

9. Next, we have:

q =
e

ℏc
; qe =

e2

ℏc
= α = q′e′ ; qe = q′r2e = q′e′. (1.270)

e′ = r2e. (1.271)
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An electric (or magnetic) charge thus has a dinum +2, which is also the
dinum of a surface.

10. We thus have:

α =
e2

ℏc
=
e′

2

ℏ′c
=
r4e2

ℏ′c
; e2ℏ′c = ℏcr4e2. (1.272)

ℏ′ = r4ℏ. (1.273)

The “Planck constant” is thus a variable when the ratio of similitude is not
reduced to 1 and the dinum of the action is 4 – this is the dinum of a space-
time volume (this is convenient for relativistic thermodynamics). We also
remark that it is not consistent to give to J0 a status of probability density,
but it is consistent for J0/ℏc which has the expected dinum −3.

11. For a proper mass m0 we have

m0c

ℏ
= m = rm′ = r

m′
0c

ℏ′
= r

m′
0c

r4ℏ
=
m′

0c

r3ℏ
. (1.274)

And this gives
m′

0 = r3m0. (1.275)

A proper mass thus has a dinum +3; this is the dinum of a volume. Both a
charge or a proper mass are no longer invariant, and this requires a change
in our habits. Among the bad habits needing a quick change is taking ℏ = 1.
This is nonsense if ℏ is variable, as shown in (1.273). All these variations
do not contradict relativistic invariance in the restricted sense, which is the
particular case where r = 1: the concept of dinum is not pertinent in this
case 31 .

12. Pressure, with dimension ML−1T−2 thus has a null dinum.

13. We now consider the classical part F = ∇Â of the electromagnetic
field. We have:

F =M∇′M̂Â,

MFM−1 =MM∇′M̂ÂM−1 = reiθ∇′M̂ÂM−1 (1.276)

= ∇′M̂ÂreiθM−1 = ∇′M̂ÂMMM−1 = ∇′Â′ = F ′. (1.277)

31. The variation of r changing m0 and ℏ has no consequence on measurements of mass,
which are always measurements of the ratio between two masses. When physics passes
from classical mechanics into relativistic mechanics, where masses are no longer invariant,
there is no need to change the mass unit: any measurement of mass is obtained at zero
velocity in the laboratory. It is the same here, because any proper mass and any action
varies with the same ratio (r3 for a proper mass, r4 for an action), in the laboratory at the
time when the measurement is made. The variation of ℏ, which remains relativistically
invariant, is thus perfectly compatible with the replacement of the standard mass by a
standard action, more accurate and more stable than the previous International Prototype
Kilogram (IPK).
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Since M brings
√
r and since M−1 brings a 1/

√
r factor, the electromagnetic

field has a dinum 0 (and this is necessarily the same for the other gauge
fields). All these results are consistent with the laws of mechanics and of
electromagnetism: mass, energy and momentum have the same dinum +3.
A mechanical or electromagnetic force has a dinum 2: this is consistent with
the force exerted on a charge since the dinum of a charge is 2 and the dinum
of a field is 0.

The fact that the dinum of gauge fields is null, and the fact that they
transform following the F ′ =MFM−1 law is very important, as this implies
that an F1F2 product of two such fields again satisfies the same rule:

F ′
1F

′
2 =MF1M

−1MF2M
−1 =MF1F2M

−1. (1.278)

This is why products of photon fields may be added together and may follow
Bose-Einstein statistics (actually found in the thesis of L. de Broglie [53]).
In the kind of fields acting as operators on the wave, this also allows us the
definition of creation and annihilation operators.

1.8 Invariant space-time
When we presented this double space-time in the book of the same name

[22], we implicitly worked with ρ on an equal footing with r. This is natural
since ρ′ = rρ. More generally there is no difference of structure between a
dilator M defining the similitude R, and ϕ(x), which are both complex 2×2
matrices, which means two elements of the Cl3 algebra. More precisely ϕ is
a function of space-time with value in Cl3. Therefore ϕ, like M , allows us
to define a similitude Dx, with ratio ρ = ρ(x), by:

Dx : X 7→ x = ϕXϕ†. (1.279)

And the components Dν
µ of the four vectors Dµ are the terms of the matrix

of this similitude Dx because:

x = xµσµ = ϕXνσνϕ
† = Xνϕσνϕ

† = XνDν = XνDµ
νσµ ; xµ = Dµ

νX
ν .

(1.280)
There is no difference between the M ′M product giving the composition

R′◦R of the similitudes, and the productMϕ which gives the transformation
of the wave under a similitude, and which then induces a composition of
the similitudes D′

x′ = R ◦Dx:

x′ =MxM† =MϕXϕ†M† = (Mϕ)X(Mϕ)† = ϕ′Xϕ′
† (1.281)

This implies that the X introduced in (1.279) does not change when seen by
the observer at x or by the observer at x′. It is independent of the observer.
We may remark that the dinum of X is null, because the dinum of x is 1
while the dinum of ϕ and of ϕ† are 1/2.

We may then name the manifold of X the invariant space-time.
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1.9 Energy–momentum, Lorentz force
The calculation of the Lorentz force may be done in space-time algebra;

this needs the use of the method of calculation explained in [79] and [83].
Since the wave of the electron only has value in the even subalgebra and
since this even subalgebra is isomorphic to the Cl3 algebra, we are able to
calculate the Lorentz force easier using Cl3. First question: what energy–
momentum density may be attached to the Dirac wave? Quantum field
theory derives this density from the Lagrangian density, and the invariance
of the Lagrangian density under space-time translation allows us to define
a tensor density of energy–momentum from Noether’s theorem. But the
Lagrangian density is also a problem: several textbooks, old [2][105] or new
like Wikipedia, give this Lagrangian density as:

L = iψ∂ψ −mψψ. (1.282)

Besides the error in sign, because they wrongly indicate a negative energy
density, these authors are apparently unaware of the complex character of
this Lagrangian density. Some other authors are more precise [96] and give
the Lagrangian density as:

L = ℜ(−iψ∂ψ) +mψψ. (1.283)

This is the form that we previously used. We must recall that passing from
this form to the improved equation replaces ψψ = ρ cos(β) with ρ. It is
interesting to see why the absence of rigor in this part of the theory has
no impact on the studies that came after and remains unnoticed. We have
obtained this Lagrangian density in (1.133) as the real part of the wave
(because the real field is always included in real Clifford algebras). Since
we work in the Pauli algebra, this is the real part (in the complex field)
of the trace of the matrix. This trace also has an imaginary part which
gives the conservation of the probability current (∂µJµ = 0). This explains
why the Lagrangian density of the seemingly complex form (1.283) is never-
theless correct, the imaginary part being automatically null. Moreover the
formula is shorter and more convenient for an introduction. The physical
reason explaining why the two formulas for L give the same result is the
invariance under the electric gauge, associated with the conservation of the
probability current by Noether’s theorem. We may then begin all calcula-
tions from (1.283), using complex variables to calculate densities which will
nevertheless all be real as a result of the electric gauge invariance.

Like the Lagrangian density, the tensor T is the sum of a left part de-
pending only on the left wave η and of a right part depending only on the
right wave ξ. We will again see in Chapter 2 this important partition be-
tween right and left waves, a partition which is invariant under Cl∗3, thus
relativistically invariant. The notion that these left and right waves are the
fundamental fields was obtained and used by G. Lochak [84]–[90] for his the-
ory of the magnetic monopole. This partition is actually important for all
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tensor densities that we obtain from the spinors. The existence of a energy–
momentum tensor TR for the right waves and another tensor TL for the left
waves implies the existence of two tensors of energy–momentum, the
tensor T = TR + TL and the tensor V = TL − TR noted by O. Costa de
Beauregard [51] as not yet classically interpreted. This tensor V is simply
the difference between the right and left tensors 32 . The Tétrode tensor
becomes:

Tµ
ν =

m

kl
Tµ
Lν +

m

kl
Tµ
Rν ,

Tµ
Lν =

i

2

[
− η1†σµ∂νη

1 + (∂νη
1†)σµη1

]
+ (qAν + lvν)D

1µ
L , (1.284)

Tµ
Rν =

i

2

[
− ξ1†σ̂µ∂νξ

1 + (∂νξ
1†)σ̂µξ1

]
+ (qAν + rvν)D

1µ
R . (1.285)

In space-time algebra, the energy–momentum tensor T (u) = T (u, x) is inter-
preted by Hestenes [75] as the flux of energy–momentum through a hyper-
surface with normal vector u at the space-time point x. It is a vectorial
function of a vectorial variable 33:

T (u) = T (uµσ
µ) = uµT (σ

µ). (1.286)

Thus the tensor is completely defined by the vectors

Tµ = T (σµ), (1.287)

which satisfy
Tµ = Tµ

ν σ
ν ; Tµ

ν = Tµ · σν . (1.288)
We then get:

∂µT
µ =(∂µT

µ
ν )σ

ν , (1.289)

∂µT
µ
Lν =

i

2
∂µ[−η1†σµ∂νη

1 + (∂νη
1†)σµη1] + ∂µ[(qAν + lvν)D

1µ
L ], (1.290)

∂µT
µ
Rν =

i

2
∂µ[−ξ1†σ̂µ∂νξ

1 + (∂νξ
1†)σ̂µξ1] + ∂µ[(qAν + rvν)D

1µ
R ], (1.291)

where the partial derivatives commute and the J current is conservative.
We then get:

∂µ[(qAν + lvν)D
1µ
L ] = (q∂µAν + l∂µvν)D

1µ
L + (qAν + lvν)∂µD

1µ
L

= (q∂µAν + l∂µvν)D
1µ
L (1.292)

∂µ[(qAν + rvν)D
1µ
R ] = (q∂µAν + r∂µvν)D

1µ
R + (qAν + rvν)∂µD

1µ
R

= (q∂µAν + r∂µvν)D
1µ
R (1.293)

32. To derive the dynamics of the electron Hestenes started from a different tensor [75]
containing only the differential terms. Yet he added the electromagnetic part, his tensor
is thus identical to ours. Hestenes’ calculation is complicated by failing to distinguish the
right and left parts of the wave. It is only with a convenient choice of the γµ matrices
that we can easily see the tensors as sums of a left and a right part.

33. For GR this is an important point that comes from quantum physics: vectors are
the only useful tensors.
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∂µT
µ
Lν =

i

2
[−(∇η1)†∂νη1 − η1†∂ν(∇η1) + ∂ν(∇η1)†η1 + ∂νη

1†∇η1]

+ (q∂µAν + l∂µvν)D
1µ
L , (1.294)

∂µT
µ
Rν =

i

2
[−(∇̂ξ1)†∂νξ1 − η1†∂ν(∇̂ξ1) + ∂ν(∇̂ξ1)†ξ1 + ∂νξ

1†∇̂ξ1

+ (q∂µAν + r∂µvν)D
1µ
R . (1.295)

Next we use the wave equations of η1 and ξ1 which are equivalent to the
system:

∇η1 = −i(qA+ lv)η1; (∇η1)† = iη1†(qA+ lv),

∇̂ξ1 = −i(qÂ+ rv̂)ξ1; (∇̂ξ1)† = iξ1†(qÂ+ rv̂). (1.296)

We thus obtain:

∂µT
µ
Lν = [q(∂µAν − ∂νAµ) + l(∂µvν − ∂νvµ)]D

1µ
L , (1.297)

∂µT
µ
Rν = [q(∂µAν − ∂νAµ) + r(∂µvν − ∂νvµ)]D

1µ
R , (1.298)

k∂µT
µ
ν = q(∂µAν − ∂νAµ)

(m
l
D1µ

L +
m

r
D1µ

R

)
+m(∂µvν − ∂νvµ)J

µ.

(1.299)

The electromagnetic field F et and the gravitational field G are defined as

Fµν := ∂µAν − ∂νAµ; Gµν := ∂µvν − ∂νvµ. (1.300)

We hence obtain:

∂µT
µ
ν = qFµνJ

µ +mGµνJ
µ, (1.301)

J : =
m

l
D1

L +
m

r
D1

R. (1.302)

If m ≈ l ≈ r and with the total field

F := F +
m

q
G, (1.303)

we obtain:
∂µT

µ ≈
(
Fµν +

m

q
Gµν

)
qJµσν = FµνqJ

µσν . (1.304)

We then obtain a Lorentz relation for a space-time vector j (j0 = ρe: density
of charge; j⃗: density of electric current) under the relativistic form:

j = qJ; ∂µT
µ = Fµν j

µσν . (1.305)

Thus with:

F = E⃗ + iH⃗

j = qJ = ρe + j⃗; f = f0 + f⃗, (1.306)
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where E⃗ is the electric field, H⃗ is the magnetic field, ρe is the electric
charge, j⃗ is the density of electric current and f⃗ is the force density, (1.305)
is equivalent to:

f⃗ = ρeE⃗ + j⃗× H⃗; f0 = E⃗ · j⃗. (1.307)

This is obviously very important to unify the laws of physics: except the
Lorentz force that we simply obtained as a consequence of the Dirac equation
or of our improved equation, only the gravitational field is able to yield the
gravitational force as a consequence of field equations. This means that the
Standard Model, in the fully relativistic manner used here, is as good as
general relativity to obtain the motion of field sources.

1.10 Electromagnetic field
We recall that the electric current j = qJ is linked to the chiral cur-

rents DL = L1L1†, DR = R1R1†. Without the magnetic monopole, all of
Maxwell’s laws are reduced to (see A.3.6):

F = ∇Â; F̂ = ∇̂A; ∇F̂ = j, (1.308)

and thus at the second order:

∇(∇̂A) = (∇∇̂)A = □A = j = qJ =
e

ℏc

(m
kl
D1

L +
m

kr
D1

R

)
. (1.309)

Since J is a linear combination of chiral currents, we study two fields:

FL := ∇D̂1
L; F̂R := ∇̂D1

R. (1.310)

The left field FL satisfies

FL = E⃗L + iH⃗L = (∂0 − ∂⃗)(D10
L − D⃗1

L)

= ∂µD
1µ
L − ∂0D⃗

1
L − ∂⃗D10

L + i∂⃗ × D⃗1
L (1.311)

and we thus obtain:

0 = ∂µD
1µ
L (1.312)

E⃗L = −∂0D⃗1
L − ∂⃗D10

L ; H⃗L = ∂⃗ × D⃗1
L. (1.313)

The right field FR satisfies

F̂R = −E⃗R + iH⃗R = (∂0 + ∂⃗)(D10
R + D⃗1

R)

= ∂µD
1µ
R + ∂0D⃗

1
R + ∂⃗D10

R + i∂⃗ × D⃗1
R (1.314)

and we thus obtain:

0 = ∂µD
1µ
R (1.315)

E⃗R = −∂0D⃗1
R − ∂⃗D10

R ; H⃗R = ∂⃗ × D⃗1
R. (1.316)
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We express the covariant derivatives in (1.198) as:

dLµ = −i∂µ + lµ; lµ := qAµ + lvµ,

dRµ = −i∂µ + rµ; rµ := qAµ + rvµ. (1.317)

The wave equations for η1 and ξ1 can be expressed as:

σµ∂µη
1 = −iσµlµη

1, (1.318)

σ̂µ∂µξ
1 = −iσ̂µrµξ

1. (1.319)

Densities which are components of the energy–momentum tensor may be
separated into two parts:

Tµ
Lν =

1

2

[
η1†σµ(−i∂νη1 + lνη

1) + (i∂νη
1† + lνη

1†)σµη1
]

=
i

2

[
− η1†σµ∂νη

1 + (∂νη
1†)σµη1

]
+ lνη

1†σµη1, (1.320)

Tµ
Rν =

1

2

[
ξ1†σ̂µ(−i∂νξ1 + rνξ

1) + (i∂νξ
1† + rνξ

1†)σ̂µξ1
]

=
i

2

[
− ξ1†σ̂µ∂νξ

1 + (∂νξ
1†)σ̂µξ1

]
+ rνξ

1†σ̂µξ1. (1.321)

The equation of the left wave gives:

∂0η
1 + σ1∂1η

1 = σ2∂2η
1 + σ3∂3η

1 − i(l0 + l1σ
1 + l2σ

2 + l3σ
3)η1. (1.322)

Multiplying on the left side by η1†σ1 we obtain:

η1†σ1∂0η
1 + η1†∂1η

1 (1.323)

= −iη1†σ3∂2η
1 + iη1†σ2∂3η

1 − iη1†(l0σ
1 + l1 + iσ3l2 − iσ2l3)η

1.

Using the adjoint, and then adding, we obtain:

(∂0η
1†)σ1η1 + (∂1η

1†)η1 (1.324)

= i(∂2η
1†)σ3η1 − i(∂3η

1†)σ2η1 + iη1†(σ1l0 + l1 − iσ3l2 + iσ2l3)η
1,

∂0(η
1†σ1η1) + ∂1(η

1†σ0η1)

= −iη1†σ3∂2η
1 + i(∂2η

1†)σ3η1 + 2l2η
1†σ3η1

+ iη1†σ2∂3η
1 − i(∂3η

1†)σ2η1 − 2l3η
1†σ2η1. (1.325)

We thus get: 34

∂0D
11
L + ∂1D

10
L = 2T 3

L2 − 2T 2
L3,

−E1
L = 2(T 3

L2 − T 2
L3). (1.326)

34. We must notice that this calculation is completely dependent on the number of
space dimensions: three. It is linked to the existence of the cross product and mixed
product, with the dimension 1 + 3 + 3 + 1 of the Cl3 algebra, which gives σ1σ2σ3 = i,
and so on.
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Circularly permuting indices, we have:

E1
L = 2(T 2

L3 − T 3
L2),

E2
L = 2(T 3

L1 − T 1
L3), (1.327)

E3
L = 2(T 1

L2 − T 2
L1).

Now subtracting (1.323)−(1.324) we obtain:

η1†σ1∂0η
1 − (∂0η

1†)σ1η1 + 2il0η
1†σ1η1

+ η1†σ0∂1η
1 − (∂1η

1†)σ0η1 + 2il1η
1†σ0η1 (1.328)

= −i∂2(η1†σ3η1) + i∂3(η
1†σ2η1).

Next dividing by i and permuting indices, we obtain:

H1
L = −2(T 1

L0 + T 0
L1),

H2
L = −2(T 2

L0 + T 0
L2), (1.329)

H3
L = −2(T 3

L0 + T 0
L3).

The strong link obtained here between the electromagnetic field and the
energy–momentum tensor of the electron wave is thus proper to three-
dimensional space. 35

The equation of right waves gives:

∂0ξ
1 + σ1∂1ξ

1 = σ2∂2ξ
1 + σ3∂3ξ

1 − i(r0 + r1σ1 + r2σ2 + r3σ3)ξ
1. (1.330)

Multiplying on the left side by ξ1†σ1 we obtain:

ξ1†σ̂1∂0ξ
1 + ξ1†σ̂0∂1ξ

1 = iξ1†σ̂3∂2ξ
1 − iξ1†σ̂2∂3ξ

1

− ir0D
11
R − ir1D

10
R − r2D

13
R + r3D

12
R . (1.331)

Next using the adjoint and adding, this gives:

∂0D
11
R + ∂1D

10
R = −2T 3

R2 + 2T 2
R3, (1.332)

E1
R = 2(−T 2

R3 + T 3
R2),

E2
R = 2(−T 3

R1 + T 1
R3), (1.333)

E3
R = 2(−T 1

R2 + T 2
R1).

While by subtracting we obtain:

H1
R = 2(T 1

R0 + T 0
R1),

H2
R = 2(T 2

R0 + T 0
R2), (1.334)

H3
R = 2(T 3

R0 + T 0
R3).

35. This is a sufficient reason to follow Baylis [2] and prefer Cl3 to Cl1,3, the space-time
algebra previously used by many physicists like Hestenes, Boudet and Lasenby. None of
them got relations (1.329).
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It is possible to gather together the left and right parts of the electromag-
netic field by using Costa de Beauregard’s tensor V such that:

V µ
ν := 2(Tµ

Lν − Tµ
Rν), (1.335)

because we obtain:

E1 = V 2
3 − V 3

2 ; H
1 = −V 1

0 − V 0
1 ,

E2 = V 3
1 − V 1

3 ; H
2 = −V 2

0 − V 0
2 , (1.336)

E3 = V 1
2 − V 2

1 ; H
3 = −V 3

0 − V 0
3 .

The electromagnetic field is thus naturally the difference of two chiral fields,
and the polarization of light is the direct consequence of the structure of
the material wave of the electron. Moreover a difference exists between
the two parts, even in the second-order equation coming from Maxwell’s
laws. To obtain the D’Alembertian of the potentials, ∇̂∇D̂L is used on
the left part of the electromagnetic field, while ∇∇̂DR is used on the right
part. The electromagnetic field is a pure bivector field (F = E⃗ + iH⃗) with
neither scalar nor pseudoscalar part: this comes from the nature of F as
the gradient of a vector, without a pseudovector part (this will change in
the second chapter), and from the conservation of DL and DR currents.

The potential A is not only a mathematical tool for the calculation of
the electromagnetic field, it has a kind of physical reality; this was claimed
by O. Costa de Beauregard [52], following L. de Broglie [55] [56]. Still more
important, the potential A is not exterior to the wave, but totally dependent
on the wave, which is necessary in any true theory of fields. We will explain
in the following chapter why A seems exterior.

The wave equation of the electron comes from a Lagrangian mechanism,
and we will explain in the next Chapter exactly how and why. And we do
not need a Lagrangian of the electromagnetic field. This field is entirely
incorporated into the quantum field of the electron. Maxwell’s laws and the
Lorentz force are necessary consequences of the improved wave equation, for
the densities of energy–momentum and of kinetic momentum,. The electro-
magnetic field does not need a Lagrangian density and its associated energy–
momentum, because the electromagnetic field itself is energy–momentum.
This is directly linked, in light, to the existence, claimed by Einstein [64],
of quanta of energy–momentum, nowadays called photons,.

1.11 Absolute length and time units
This study earlier introduced in 1.5.5 a constant k which has dimension

T 2/M . This constant may be linked to the gravitational constant G with
the following definition of la, using the fine structure constant α:

e2 = αℏc; l2a :=
Ge2

c4
= α

Gℏ
c3

= αl2P , (1.337)



84 CHAPTER 1. THE ELECTRON WAVE WITH SPIN 1/2

where lP is the Planck length. We name la =
√
αlP the absolute length.

The inclusion of the constant α in the natural units of the Planck system
was introduced by one of us in [102]. Thus αℏ/c which has dimension ML
may be set as mala, where ma is the absolute unit of mass, which gives:

ma = α
ℏ
c

√
c3

αGℏ
=

√
α

√
ℏc
G

=
√
αmP (1.338)

where mP is the Planck mass. We may also use an absolute time unit ta
and an absolute constant k:

ta :=
la
c

=
√
αtP ; k :=

t2a
ma

=
l2a

mac2
=

l2a
Ea

, (1.339)

naming Ea the absolute unit of energy. As the main uncertainty of mea-
surement comes from G (G = 6.67430(15)× 10−11m3kg−1s−2), we obtain:

la = 1.38068(3)× 10−36m, (1.340)

mabs = 1.85921(4)× 10−9kg, (1.341)

ta = 4.60545(10)× 10−45s, (1.342)

k = 1.140815(25)× 10−80s2kg−1, (1.343)
1

k
= 8, 76566(19)× 1079kg s−2. (1.344)

Hence we obtain for the J current:

J

ℏc
=

1

kℏc

(m
l
DL +

m

r
DR

)
=
α

l3a

(m
l
DL +

m

r
DR

)
. (1.345)

Thus J
ℏc has the dimension L−3 of a probability density and the tensors

T have the dimension of energy densities. Hence it is the same with the
electromagnetic field.



Chapter 2

Weak Interactions
(Lepton case)

We use the Clifford algebra Cl3,3 for the waves of all fermions
and antifermions of the first generation. This includes a mag-
netic monopole that is also the complete neutrino, with both left
and right waves. We study the new tensor densities that come
from the extension of the electron wave. We transpose to Clifford
algebra the covariant derivative of the electroweak gauge group.
This covariant derivative is compatible with the mass term of the
improved wave equation. We generalize to the lepton wave the
Lagrangian density of the electron as well as its double link with
the gauge fields. The recursion of the wave equation allows us to
obtain the properties of the gauge fields. The lepton wave equa-
tion is form-invariant under Cl∗3. The gauge invariance group is
the U(1) × SU(2) group of the electroweak interactions. We also
obtain the value of each charge of particle and antiparticle. The
constraints imposed by this gauge group allow us to calculate the
gauge potentials and to simplify the wave equation. The partic-
ular case of the electron fixes the value of the Weinberg–Salam
angle to 30◦. We study the energy–momentum tensor density. We
obtain the Lorentz force. We derive the dynamics of the magnetic
monopole. We study the kinetic momentum tensor density and
we derive the quantization of the kinetic momentum from the
form-invariance of the kinetic momentum under Cl∗3.

85
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2.1 From the electron wave to the complete
wave

In the first chapter we ascribed a dinum of 1/2 to the wave of the elec-
tron, and we saw that the electromagnetic field had a dinum of 0. Thus
some quantities have a dinum while others do not. The origin of the con-
cept of a dinum is relativistic quantum physics. Since QFT replaces the
electromagnetic field with a field of creator and annihilator operators, we
thus postulate this fermion field as a field of operators:

Ψ : ϕ 7→ ϕe, ϕe = Ψ(ϕ); Ψ ∈ End(Cl3); x = ϕeXϕ̃e. (2.1)

where X belongs to the self-adjoint part of Cl3, and ϕe is the wave of the
electron. This is the fourth major change that we introduce: space-time
is not a starting point, but the consequence of the fermion field
value. This will be essential to incorporating gravitation into the Theory
of Everything (see Chapter 4). The x = xµσµ ∈ Cl3 is the general linear
element of space-time in special relativity, and the general element of any
tangent space-time in general relativity. Time is the fourth component:
x0 = ct. We do not need additional dimensions for the space-time manifold.

For the first generation of fundamental fermions the SM accounts for
16 fermions: eight particles and their corresponding antiparticles. We have
just studied the case of the electron and its antiparticle the positron. These
objects are not the only ones in the Standard Model. They are only exam-
ples of what are called fermions. In ordinary matter other fermions exist
within the atoms, whose nuclei are made of protons and neutrons that are
themselves composed of colored quarks. Besides an electron and its neu-
trino or their equivalent particles, this ordinary matter forms what is called
the “first generation.” Each generation includes two quarks with three color
states each. Thus we get eight waves similar to the electron wave ϕe. We
label these waves from one to eight. Each one of these eight waves so labeled
has a left part and a right part. Here we study the general case, while in
[28] we simplified the study by neglecting the right waves of the quarks. In
[47] we summarized the scene in the following picture:
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The quarks of the first generation are called the up (u) and down (d) quarks,
and the couple d−u is similar to n−e in electroweak interactions, but with
differences since the electric charge of the u quark will be 2

3 |e|, while the
charge of the d quark will be − 1

3 |e|. For the lepton sector of each generation,
the charges of the antiparticles appear opposite to the charges of particles.
As we saw in Chapter 1, neither the charges nor the mass actually change.
But the wave equations change because all partial derivatives change sign,
and the right and left parts of the waves are exchanged. Without this
identity between the wave of the particle and the wave of the antiparticle
we should count not only 64 parameters but 128, and End(Cl3) offers only
64 dimensions. The three “color charges” are called r, g, b (red, green,
blue). The lepton wave that we study in this chapter is the white one
at the center of the diagram. The quark waves are placed at the colored
perimeter of the diagram; we will study them in the next chapter. This
diagram indicates two symmetries that are both left–right symmetries: we
placed the left waves on the left side and the right waves on the right side.
We recall that the invariance group acts differently on right Rn and left Ln

waves – this is precisely the source of the symmetry. The Cl∗3 invariance
group is also the source of the second symmetry between the upper part of
the diagram, on which the action is a multiplication on the left side, while
the action on the lower part is a multiplication on the right side 1 . This
second symmetry exchanges, for instance, the four red cases: those of the
upper part containing the waves L2 and R2 of the d quark with color r, and
those of the lower part containing the waves L5 and R5 of the u quark with
color r. This double symmetry is well known in the framework of Lie groups
and Lie algebras: the GL(n,C) groups have four kinds of representations.
In these symmetries quarks and leptons are highly similar.

We now see what differentiates those in the perimeter of the diagram
from those at the center. For each quarter of the diagram we have one
white box and three colored boxes; thus the whole wave of the first gen-
eration also comes from a mathematical object linked to Cl3 since it takes
value in the algebra of all endomorphisms on this linear space: End(Cl3).
It also happens that this ring is the Clifford algebra Cl3,3 (we study this
algebra in B.2). This algebra is a 64-dimensional linear space on the R field.
Therefore we will use the function Ψ, with value in Cl3,3, as quantum wave
of second quantization. This algebra contains eight supplementary linear
spaces similar to Cl3. So we will use these eight linear spaces to obtain
eight waves linearly similar to the wave of the electron in Chapter 1. With
(B.95) we have

Ψ = Ψ(x) =

(
Ψl + iΨb Ψr +Ψg

Ψr −Ψg Ψl − iΨb

)
, (2.2)

1. This symmetry that inverts the order of all products is called reversion in Clifford
algebra (see A.1).
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Ψl = P1 − iI1; P1 =

(
ϕe 0

0 ϕ̂e

)
; I1 =

(
0 ϕ†n
ϕn 0

)
, (2.3)

Ψr = −iP2 + I2; P2 =

(
ϕdr 0

0 ϕ̂dr

)
; I2 =

(
0 ϕ†ur
ϕur 0

)
, (2.4)

Ψg = −iP3 + I3; P3 =

(
ϕdg 0

0 ϕ̂dg

)
; I3 =

(
0 ϕ†ug
ϕug 0

)
, (2.5)

Ψb = −iP4 + I4; P4 =

(
ϕdb 0

0 ϕ̂db

)
; I4 =

(
0 ϕ†ub
ϕub 0

)
. (2.6)

The Ψ term is then composed of two different kinds of terms: Ψl which is a
single term, and Ψr, Ψg and Ψb, which are three similar terms, all different
from Ψl. This means that we distinguish between a lepton part Ψl and a
quark part (Ψr, Ψg, Ψb) directly from the definition of the whole quantum
wave.

In this chapter we study the Ψl wave, which is a function of space-time
in Cl3,1. And since i is the 3-vector term of Cl3, which commutes with
any term in Cl3, when we restrict Ψl to its first row containing the 1 and
8 indices we may consider a function with value in Cl3,1 as a function in
Cl3 × Cl3:

Ψl = (ϕe − iϕ†n) = (ϕ1 ϕ8†) ∈ Cl3 × Cl3. (2.7)

The Ψl wave is made of two similar waves, ϕe = ϕ1 which is, in the picture
of second quantization, the electron wave. The electron wave thus plays a
dual and special role, being included both in Cl3 and End(Cl3) by (2.2) and
(2.3). So we may say that the electron is both an example of a fermion and
the quintessential fermion. The wave iϕn = ϕ8 is the wave of the neutrino,
and also the wave of Lochak’s magnetic monopole when it has both a left
part and a right part. We previously placed the waves of antiparticles on
the second row of each matrix in (2.3) to (2.6) [46, 47]. With the charge
conjugation studied in 1.4.1 the second row is determined by the first row
of the matrix, and we can use ad libitum the complete matrix element of
Cl3,1 or the first row allowing us to work with Cl3 × Cl3. We shall thus
employ the convenience of these algebras previously used in [47].

We also saw this essential property of the electron wave: the wave is
double, with a right spinor and a left spinor (see (1.60)). The origin of
this dualism is the existence of two nonequivalent homomorphisms from the
SL(2,C) group into the proper Lorentz group [95]. We also know that not
only electrons exist: The β radioactivity that emits electrons also emits
another particle nowadays called the electron antineutrino. The electron
neutrino and antineutrino induce the existence of another pair of spinors,
a left one and a right one. In a theory that unifies all interactions, and
since gravitation and the geometry of space-time are strongly linked, the
origin of this quartet of spinors which together constitute the lepton wave
is necessarily geometric. And the whole of electromagnetism, including the
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electron wave, is form-invariant under the greater geometric group Cl∗3.
This group is isomorphic to the GL(2,C) group which includes SL(2,C)
as a subgroup. The GL(n,C) groups are well known to be the simplest
Lie groups, their Lie algebra being the matrix algebra Mn(C). Also well
known are the four kinds (not only two) of nonequivalent homomorphisms.
Our hypothesis is: these four kinds of homomorphisms are the origin of the
existence of the four kinds of spinors forming the lepton wave. In the next
chapter we will extend this hypothesis to the quarks.

The Standard Model first considered a neutrino reduced to its left wave
only, and without proper mass. Modern experiments on neutrinos show that
they must have a proper mass, which is very small indeed yet nonetheless
still nonzero, and thus a right neutrino wave must also exist. The Standard
Model actually has no objection against the existence of this right wave;
it is simply considered useless. Yet the fact that the neutrino travels in
space with the speed of light, or in any case with a velocity extraordinarily
near light speed, justifies a null proper mass. With the Dirac wave equation
for the neutrino, there is thus a problem, which is derived from the mass
connection between left and right waves. We will see in this chapter how
the improved equation solves all these difficulties.

The starting point of this work was Lochak’s theory of the leptonic mag-
netic monopole [84]-[91], where the wave of the monopole is also a function
of space-time with value in Cl3. Whether for the electron–positron pair or
for the electron–neutrino pair or for the electron–monopole pair we obtain
in each case four waves with a spinor value, with two left spinors and two
right spinors. Moreover, as a particular case, we must again end up with
only the electron or only the left electron neutrino. We saw in the first
chapter that the charge conjugation is simply the parity–time transforma-
tion; hence we will continue to use this in the case of the lepton wave. Thus
the two pairs of waves may account for both the electron and the complete
neutrino, or for the electron and the magnetic monopole. This leads us to
think that these two objects, the neutrino with proper mass and
the magnetic monopole, are the same thing.

An extension of the Dirac equation for the electroweak interactions [107]
was studied by Hestenes [77] and by Boudet [5] [6] in the framework of the
Cl1,3 algebra. The extension of the gauge invariance of the improved Dirac
equation necessarily leads to the gauge invariance under U(1) × SU(2),
also obtained in [12]. This comes from the existence of four independent
generators with square −1 in the Cl3 algebra: i = σ1σ2σ3, iσ1, iσ2 and iσ3.
They are also the generators of the Lie algebra of U(1)× SU(2). Since the
form invariance is always governed by the Cl∗3 group, and since Cl3 × Cl3
is a Cl3 left modulus, we may express everything in Cl3: all complex 4× 4
matrices of the Dirac theory may be calculated by blocks made of 2 × 2
matrices.

Under the similitude D generated by any dilator M in Cl∗3 we recall that
we have: x 7→ x′ = D(x) = MxM†, ∇ = M∇′M̂ and det(M) = reiθ, and
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also
R1 7→ R′1 =MR1; L̂1 7→ L̂′1 = M̂L̂1.

The R8 and L8 waves use the two other homomorphisms with a reversion:

R8 7→ R′ 8 = R8M̃ ; R̃′ 8 =MR̃8, (2.8)

L̂8 7→ L̂′ 8 = L̂8M ; L
′ 8 = M̂L

8
,

This gives another reason for the existence of two kinds of leptons in the first
generation: the electron and the neutrino. We will see in the next chapter
how it also justifies the existence of two quarks in the first generation, the u
and the d quarks. The duality between a charged lepton and another lepton
without electric charge is reproduced for each one of the three generations,
through the simple generalization of Section 1.6. For the four spinors we
use the following expressions: 2:

ξn =

(
ξn1
ξn2

)
; ηn =

(
ηn1
ηn2

)
; η̂n =

(
−ηn2
ηn1

)
; ξ̂n =

(
−ξn2
ξ
n

1

)
, (2.9)

ϕ1 = R1 + L1 =
√
2
(
ξ1 η̂1

)
; R1 =

√
2
(
ξ1 0

)
; L̂1 =

√
2
(
η1 0

)
,

ϕ̃8 = R̃8 + L̃8 =
√
2
(
ξ8 η̂8

)
; R̃8 =

√
2
(
ξ8 0

)
; L

8
=

√
2
(
η8 0

)
.

We saw that the wave equations of the right and left parts of the electron
wave satisfy a first-order equation, with only two extra terms: a gauge term
and a mass term. The gauge term is from the geometric point of view a
covariant vector, and the mass term is the product of the reduced mass
m by a unitary vector v. This vector is the local reduced velocity of the
relativistic fluid. The dinum of the different terms allows us to understand
why no other term is possible in a first-order wave equation (see 5.6) thus
we can only generalize these equations. We can then suppose a similar wave
equation for the four waves:

i∇η1 = l1η1, (2.10)

i∇̂ξ1 = r̂1ξ1, (2.11)

i∇η8 = l8η8, (2.12)

i∇̂ξ8 = r̂8ξ8. (2.13)

In this chapter, the M in Cl∗3 which allows us to get the form invariance of
the equations is constant. We have ∇ = ∇̃ and the four differential operators
are reduced to ∇ and ∇̂. The ln and rn are four covariant space-time vectors,
and we will see their connection with the potentials of the electroweak gauge
group, as well as with the reduced proper mass generalizing the proper mass
of the electron.

2. Here we use the usual notation for the complex conjugate.
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Let us first see how, when ϕ8 is zero, the two equations (2.10) (2.11)
may be the wave equations of the electron. Since η1 is, when multiplied by√
2, the left column of ϕ̂1 while ξ̂1 is the right column, these equations when

multiplied by
√
2 and using the P conjugation on (2.11) read as follows:

i∇ϕ̂1 1 + σ3
2

= l1ϕ̂1
1 + σ3

2
,

−i∇ϕ̂1 1− σ3
2

= r1ϕ̂1
1− σ3

2
. (2.14)

Adding these equations we get

i∇ϕ̂1σ3 =
l1 + r1

2
ϕ̂1 +

l1 − r1

2
ϕ̂1σ3. (2.15)

If we have set
l1 := qA+ lv; r1 := qA+ rv (2.16)

we have obtained the improved wave equation of the electron 3 :

∇ϕ̂1σ12 = qAϕ̂1 + vϕ̂1m, (2.17)

only if the vector v is equal to the J/ρ of Chapter 1, which we will see in
the next section.

2.1.1 New tensor densities
In the case of a single electron we used four currents Dµ = ϕσµϕ

†,
particularly the J = D0 = ϕϕ†. This current is the sum of the chiral
currents D1

R = R1R̃1 and D1
L = L1L̃1. Moreover these currents are now

similar to two other chiral currents:

D8
R := R̃8R8; D8

L := L̃8L8. (2.18)

And these currents, like those of the electron, have a null scalar square:

D8
R ·D8

R = D8
RD̂

8
R = R̃8(R8R

8
)R̂8 = 0,

D8
L ·D8

L = D8
LD̂

8
L = L̃8(L8L

8
)L̂8 = 0, (2.19)

because the bracketed quantities are both zero. The natural generalization
of the probability current of the electron is the lepton current Jl such that:

Jl = D1
R +D1

L +D8
R +D8

L. (2.20)

This current indeed satisfies:

J0
l = |ξ11 |2 + |ξ12 |2 + |ξ81 |2 + |ξ82 |2 + |η11 |2 + |η12 |2 + |η81 |2 + |η82 |2. (2.21)

3. It is well known that the momentum of the electron is the sum of a matter momen-
tum and an electromagnetic momentum. This duality is again obtained here with the
densities.
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This probability density is the generalization of the density of the electron
that we studied in Chapter 1. The time component J0

l is now one of 17 ×
16/2 = 136 tensor densities that we may define without derivatives from our
four spinors with four real components each (16, thus (16+ 1)16 densities).
We are now far ahead of the mere 16 tensor densities coming from
the M4(C) algebra generated by the Dirac matrices, yet presented
in most course books as the only possible tensor densities! With (2.19) we
have 4:

Jl · Jl = ĴlJl = (D̂1
R + D̂1

L + D̂8
R + D̂8

L)(D
1
R +D1

L +D8
R +D8

L)

= D̂1
RD

1
R + D̂1

LD
1
L + D̂8

RD
8
R + D̂8

LD
8
L

+ D̂1
RD

1
L + D̂1

LD
1
R + D̂1

RD
8
R + D̂8

RD
1
R + D̂1

RD
8
L + D̂8

LD
1
R

+ D̂1
LD

8
R + D̂8

RD
1
L + D̂1

LD
8
L + D̂8

LD
1
L + D̂8

RD
8
L + D̂8

LD
8
R (2.22)

= 2(D1
R ·D1

L +D1
R ·D8

R +D1
R ·D8

L +D1
L ·D8

R +D1
L ·D8

L +D8
R ·D8

L).

We saw that 2D1
R · D1

L = a1a
∗
1 where a1 = Ω1 + iΩ2, a term formed from

the two relativistic invariants Ω1 and Ω2 of the electron wave. With four
spinors we form 6 = 4 × 3/2 pairs, each giving a term similar to a1. Thus
we now have 12 invariant densities which give the 6 complex terms:

a1 = 2(ξ11η
1
1 + ξ12η

1
2) = R1L

1
+ L1R

1
,

a2 = 2(η81η
1
2 − η82η

1
1) = L̂1σ1L

8 − L
8
σ1L̃

1,

a3 = 2(ξ11η
8
1 + ξ12η

8
2) = R1L̂8 + L̃8R

1
,

a4 = 2(ξ81η
1
1 + ξ82η

1
2) = R̃8L

1
+ L1R̂8, (2.23)

a5 = 2(ξ11ξ
8
2 − ξ12ξ

8
1) = R̃8σ1R

1 −R1σ1R̂
8,

a6 = 2(ξ81η
8
1 + ξ82η

8
2) = R̃8L̂8 + L̃8R̂8.

In a similitude D generated by any dilator M in Cl∗3 we have for j =
1, 2, . . . , 6:

a′j =MajM =MMaj = reiθaj , (2.24)

a′ja
′∗
j = reiθajre

−iθa∗j = r2aja
∗
j . (2.25)

We may then generalize the invariant ρ of the wave of the electron into ρl
such that:

ρ2l =

6∑
j=1

aja
∗
j , (2.26)

4. It is thus surprising and disturbing that this significant mistake concerning the
number of tensor densities in the Dirac theory, pointed out since nearly thirty years ago
[16] by one of the present authors, is not yet corrected. This means that the control of
errors by the same “community” which propagated these errors, is imperfect, inefficient
[38], and much too conservative.
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which satisfies as ρ previously:

ρ′
2
l = r2ρ2l ; ρ

′
l = rρl; m

′ρ′l = mρl. (2.27)

Both aj and ρl thus have a dinum of 1 and m has a dinum of −1 (see 1.7).
In the domain of weak interactions the neutrino appears without a mass
term. It is necessary to add a mass term when physicists try to understand
the behaviour of neutrinos changing generation. And we may remark that
mρl is null when ρl is null, and this happens in the case where the neutrino
only has a left wave. The currents thus satisfy Jl = D8

L and D8
L · D8

L = 0,
and hence mρl = 0: the single left neutrino appears without mass.
The mass term again appears as soon as R8 is not null and as soon as the
wave of the electron is not null. The behavior of this mass which appears
and disappears ad libitum is not so mysterious if we consider that we are
able to see a neutrino only when it interacts with a charged lepton or a
quark. For the electron we have (J)2 = ρ2 = a1a

∗
1 = 2D1

R · D1
L. Similarly

we obtain:

a1a
∗
1 = 2D1

R ·D1
L, (2.28)

a5a
∗
5 = 2D1

R ·D8
R, (2.29)

because we have

2D1
R ·D8

R = D1
RD̂

8
R +D8

RD̂
1
R = R1R̃1R

8
R̂8 + R̃8R8R̂1R

1
,

R̃1R
8
=

(
0 −a∗5
0 0

)
; R8R̂1 =

(
0 a∗5
0 0

)
, (2.30)

2D1
R ·D8

R = R1

(
0 −a∗5
0 0

)
R̂8 + R̃8

(
0 a∗5
0 0

)
R

1

= (R̃8σ1R
1 −R1σ1R̂

8)a∗5 = a5a
∗
5. (2.31)

We can likewise establish:

2D1
R ·D8

L = a3a
∗
3; 2D1

L ·D8
R = a4a

∗
4,

2D1
L ·D8

L = a2a
∗
2; 2D8

R ·D8
L = a6a

∗
6. (2.32)

We then derive from these equations and from (2.23), (2.24) and (2.26) that
we have:

Jl · Jl = ρ2l ; ||Jl|| = ρl. (2.33)

As for the single electron we may define a unitary vector v as

v =
Jl
ρl

= vµσµ; vv̂ = v̂v = 1; v̂ = v−1. (2.34)

We retain the same notation v as for the case of the electron because this
vector is exactly that of Chapter 1 when the wave of the neutrino is null.



94 CHAPTER 2. WEAK INTERACTIONS (LEPTON CASE)

The natural generalization of the Lagrangian density of the electron is thus
able to contain the same mass terms, and the wave equation is able to
contain the same v in mass terms.

We must never forget that the previous tensors are only a small part of
the many tensor densities that we are able to construct from the spinor wave,
left and right. The differentiation of these tensors yields new ones, which
in turn give others by deriving again, ad infinitum – unhappily [16]. We
will also use some of these other tensor densities, for instance the energy–
momentum tensors.

2.1.2 The electroweak gauge invariance

We begin with the case of the electron following [67]. We modify nothing
to the wave of the electron which we denoted as ψ1 in the usual Dirac
formalism and ϕ1 in Cl3. The wave of the electron neutrino is denoted as
ψ8 in the Dirac formalism and ϕ̃8 in Cl3. The wave of the positron is denoted
as ψp in the Dirac formalism and the wave of the electron antineutrino is
denoted as ψa. The link between the particle and antiparticle wave will
remain the previous link seen in 1.4.1. Then we start with the particle
waves. The right spinors are ξn and the left spinors are ηn:

ψ1 =

(
ξ1

η1

)
; ψ8 =

(
ξ8

η8

)
. (2.35)

We again use the notation of (2.9) which gives us

ϕ1 =
√
2
(
ξ1 η̂1

)
; ϕ̂1 =

√
2
(
η1 ξ̂1

)
, (2.36)

ϕ̃8 =
√
2
(
ξ8 η̂8

)
; ϕ

8
=

√
2
(
η8 ξ̂8

)
. (2.37)

With the link that the Standard Model makes between the particle and the
antiparticle wave, using Cl3,1 and the shortened notation of Cl3 × Cl3, we
have:

Ψl =

(
ϕ1 ϕ̃8

−ϕ8 ϕ̂1

)
=
(
ϕ1 ϕ̃8

)
. (2.38)

The Weinberg–Salam model uses ξ1, η1, η8 and supposes ξ8 to be null. We
will use the complete wave for Lochak’s magnetic monopole while the neu-
trino itself will have no right wave. So we consider the magnetic monopole
as a complete neutrino with a left and right wave and we consider the neu-
trino of the SM as a monopole in which the right wave is absent. For the
separation of ξ1, η1 and η8 the Weinberg–Salam model uses the 1

2 (1 ± γ5)
projectors that can be presented as follows, with our choice (1.4) of Dirac
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matrices:

1

2
(1− γ5)ψ = ψL =

(
0 0
0 I

)(
ξ
η

)
=

(
0
η

)
, (2.39)

1

2
(1 + γ5)ψ = ψR =

(
I 0
0 0

)(
ξ
η

)
=

(
ξ
0

)
. (2.40)

Thus for the particles the left waves are η waves and the right waves are ξ
waves. This is invariant under Cl∗3 and therefore relativistically invariant,
since under a similitude D generated by M such that D : x 7→ x′ =MxM†,
we have (1.60): ξ′ =Mξ, η′ = M̂η. So we use

R1 =
√
2
(
ξ1 0

)
=

√
2
(
ξ1 η̂1

) 1
2
(1 + σ3),

L1 =
√
2
(
0 η̂1

)
=

√
2
(
ξ1 η̂1

) 1
2
(1− σ3). (2.41)

And we get similar formulas for R̃8 and L̃8. We now define two projectors
P± and four operators P0, P1, P2, P3 acting as follows on Ψ ∈ Cl3 × Cl3:

P±(Ψ) =
1

2
(Ψ± iΨγ21) ; i = (i 0); γ21 = (σ12 0), (2.42)

Thus we get:

P+(Ψl) =
(
L1 L̃8

)
; P−(Ψl) =

(
R1 R̃8

)
. (2.43)

So P+ is the projector on the left part of the wave and P− is the projector
on the right part of the wave. We let:

P0(Ψ) = Ψγ21 + (1− p)P−(Ψ)i+ piP−(Ψ), (2.44)
P1(Ψ) = iP+(Ψ)γ3γ5, (2.45)
P2(Ψ) = iP+(Ψ)(−iγ3), (2.46)
P3(Ψ) = P+(Ψ)(−i). (2.47)

We introduced here a number p which is linked to the charge of the magnetic
monopole and which acts only on the right wave of the neutrino, which
is unknown in the Standard Model. Noting PµPν(Ψ) = Pµ[Pν(Ψ)], they
satisfy:

P1P2 = P3 = −P2P1; P2P3 = P1 = −P3P2; P3P1 = P2 = −P1P3, (2.48)

P 2
1 = P 2

2 = P 2
3 = −P+; P0Pj = PjP0 = −iPj , j = 1, 2, 3.

The Weinberg–Salam model replaces the ∂µ derivatives with the covariant
derivatives:

Dµ = ∂µ − ig1
Y

2
Bµ − ig2TjW

j
µ, (2.49)
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with Tj = τj/2 for a doublet of left particles and Tj = 0 for a singlet of
right 5 particles. Y is the weak hypercharge, with YL = −1, YR = −2 for
the electron. For transposing this to Cl3 × Cl3 we let:

D = σµDµ; B = σµBµ; W
j = σµW j

µ, j = 1, 2, 3, (2.50)

D = γµDµ; B = γµBµ; Wj = γµW j
µ, j = 1, 2, 3; ∂∂∂ = γµ∂µ. (2.51)

We now replace (2.49) by:

D = ∂∂∂ +
g1
2
BP0 +

g2
2
(W1P1 +W2P2 +W3P3). (2.52)

First we have

∂∂∂Ψl =
(
−∇ϕ8 ∇ϕ̂1

)
, (2.53)

DΨl =
(
−Dϕ

8
Dϕ̂1

)
. (2.54)

And we get:
P0(Ψl) = i

(
2R1 − L1 2pR̃8 − L̃8

)
. (2.55)

From the form of these Pµ we may see that the Weinberg–Salam model of
weak interactions using only R1, L1 and L8 does not depend on the value
of p that may be any number. We will later see how this value is linked to
the charge of the magnetic monopole. We next obtain:

BP0(Ψl) =
(
iB(2pR

8 − L
8
) iB(−2R̂1 + L̂1)

)
. (2.56)

Next we have

P1(Ψl) =

(
−iL̃8 iL1

iL̂1 −iL8

)
; W1P1(Ψl) =

(
iW 1L̂1 −iW 1L

8
)
, (2.57)

P2(Ψl) =

(
L̃8 −L1

−L̂1 −L8

)
; W2P2(Ψl) =

(
W 2L̂1 W 2L

8
)
. (2.58)

We get for j = 3:

P3(Ψl) =

(
−iL1 iL̃8

iL
8

iL̂1

)
; W3P3(Ψl) =

(
iW 3L

8
iW 3L̂1

)
. (2.59)

Therefore (2.52) is equivalent to the system:

Dϕ
8
= ∇ϕ8 − i

g1
2
B(2pR

8 − L
8
)− i

g2
2
[(W 1 − iW 2)L̂1 +W 3L

8
],

Dϕ̂1 = ∇ϕ̂1 − i
g1
2
B(2R̂1 − L̂1)− i

g2
2
[(W 1 + iW 2)L

8 −W 3L̂1. (2.60)

5. This preference for the left waves is presupposed and not explained in the Weinberg–
Salam model. We will explain the origin of this preference in 3.8 .
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Since ξ1 is the left column of R1, and ξ8 is the left column of R̃8, while η1

is the left column of L̂1, and η8 is the left column of L
8

(not forgetting a√
2 factor), this system gives for the particles (electrons and neutrinos) and

using the main automorphism P :M 7→ M̂ for the right waves:

D̂R1 = ∇̂R1 + ig1B̂R
1,

DL̂1 = ∇L̂1 + i
g1
2
BL̂1 − ig2

2
[(W 1 + iW 2)L

8 −W 3L̂1], (2.61)

DL
8
= ∇L8

+
ig1
2
BL

8 − ig2
2

[(W 1 − iW 2)L̂1 +W 3L
8
];

D̂R̃8 = ∇̂R̃8 + ipg1B̂R̃
8.

For the waves of the positron and the antineutrino we similarly obtain

DL̂1 = ∇L̂1 − ig1BL̂
1,

D̂R1 = ∇̂R1 − ig1
2
B̂R1 − ig2

2
[(Ŵ 1 − iŴ 2)R̃8 + Ŵ 3R1], (2.62)

D̂R̃8 = ∇̂R̃8 − i
g1
2
B̂R̃8 − i

g2
2
[(Ŵ 1 + iŴ 2)R1 − Ŵ 3R̃8],

DL
8
= ∇L8 − ig1pBL

8
.

The system (2.61) is equivalent to:

Dµξ
1 = ∂µξ

1 + ig1Bµξ
1, (2.63)

Dµη
1 = ∂µη

1 + i
g1
2
Bµη

1 − i
g2
2
[(W 1

µ + iW 2
µ)η

8 −W 3
µη

1], (2.64)

Dµη
8 = ∂µη

8 + i
g1
2
Bµη

8 − i
g2
2
[(W 1

µ − iW 2
µ)η

1 +W 3
µη

8], (2.65)

Dµξ
8 = ∂µξ

8 + ig1pBµξ
8, µ = 0, 1, 2, 3, (2.66)

for the particle waves (2.62) is likewise equivalent to:

Dµξ
8 = ∂µξ

8 − i
g1
2
Bµξ

8 − i
g2
2
[(W 1

µ + iW 2
µ)ξ

1 −W 3
µξ

8], (2.67)

Dµη
8 = ∂µη

8 − ig1pBµη
8, (2.68)

Dµη
1 = ∂µη

1 − ig1Bµη
1, µ = 0, 1, 2, 3, (2.69)

Dµξ
1 = ∂µξ

1 − i
g1
2
Bµξ

1 − i
g2
2
[(W 1

µ − iW 2
µ)ξ

8 +W 3
µξ

1], (2.70)

for the antiparticles waves. For the doublet ψL =

(
η8

η1

)
of weak isospin

Y = −1 the operators in (2.64) and (2.65) give

DµψL = ∂µψL − ig1
Y

2
BµψL − i

g2
2
W j

µτjψL,

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5. (2.71)
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Only the operator in (2.66) is not accounted for the Weinberg–Salam model
because this model does not use the right wave of the electron neutrino.
We precisely arrive at this model if this right wave is null. The operator in
(2.63) is interpreted as a singlet under SU(2): ψR = ξ1 with weak isospin
Y = −2:

DµψR = ∂µψR − ig1
Y

2
BµψR. (2.72)

Finally we see here that all aspects of the weak interactions, with a doublet
of left waves, a right wave which is a singlet, a right neutrino unable to
interact, a charge conjugation exchanging right and left waves, are obtained
here from simple hypotheses:

1 - The wave of all components of the lepton sector (electron, positron,
electron neutrino and its antineutrino) is the function (2.38) of space and
time with values in the Clifford algebra of space-time.

2 - Four operators P0, P1, P2 and P3 are defined in (2.44) to (2.47).
3 - A covariant derivative is defined in (2.52).
For the antiparticles, in the case where the wave of the magnetic monopole

is reduced to the neutrino wave, we have a singulet of left wave and a doublet
of right waves. By letting:

ψL = η1; ψR =

(
ξ8

ξ1

)
; τ1 = −γ0; τ2 = γ123; τ3 = γ5, (2.73)

we get

DµψL = ∂µψL − ig1
Y

2
BµψL, (2.74)

with a weak isospin Y = 2, in accordance with the usual rule changing
charge signs. For the doublet of right waves we get

DµψR = ∂µψR − ig1
Y

2
BµψR + i

g2
2
W j

µτ jψR. (2.75)

The rule of the change of signs for all charges is equivalent to the change of
sign for g1Y and g2. But these rules are not sufficient; another change of sign
concerns τ1 = −τ1. This calls for two remarks: First, the SU(2) gauge group
thought of by quantum theory as an “internal symmetry” is indeed a geomet-
rical invariance group. This is completely forgotten when in this exposition
we pass from (2.62), where equations contain space-time vectors, to (2.63)–
(2.70) where equations only have components of tensors: these tensors are
no longer constrained by invariance under Cl∗3 but only by invariance under
the Lorentz group. Indeed the two points of view are not equivalent: the
point of view of the Weinberg–Salam model is less constrained, less efficient
than the Clifford algebra. The result is that our equations are Cl∗3 invari-
ant, but not the Weinberg–Salam model that is in fact disconnected from
the relativistic invariance of the fermion field: The relativistic invariance
works classically for the gauge fields (where the Lorentz transformation R
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defines a 4 × 4 real matrix Rµ
ν which changes xµ into x′µ = Rµ

νx
ν , and

where the electromagnetic field Fµν changes into F ′
ρσ = Rµ

ρR
ν
σFµν), and in

a quantum-mechanical manner for the spinor waves (where the dilator M
induces a similitude R which changes F into F ′ = MFM−1, which is not
at all the same transformation). The new connection that we establish here
between the fermionic wave of the electron and its neutrino and the tensors
that they allow us to construct, connects even more the fermion part and
the boson part of the Standard Model. This allows us to arrive at a uni-
fied synthesis between the different parts of relativistic physics, which was
impossible with the old tensor-based theory.

With charge conjugation simply acting like PT symmetry, space changes
orientation. Thus the three τj rotate inversely from the τ j , as is shown by
the sign change of τ1.

2.2 Retaining mass terms

The first improvement that Cl3 brings to quantum mechanics in the
Dirac matrix style is the possibility of also using the right R8 spinor that
we associate with the magnetic monopole. A second and major improve-
ment: we no longer need to suppress mass terms in wave equations. This
suppression was necessary when using the usual Dirac equation, because
mass terms link the left and the right wave, while ξ and η change in very
different ways under the gauge transformations of the electroweak group
[39] [40] [41] [44].

This suppression was also an acceptable lesser evil, from the experimen-
tal point of view, because proper masses 6 of the electron and, still more,
proper masses of the electron neutrino are very small in comparison with
the mass-energy of the W and Z0 bosons. Nevertheless this suppression is
necessarily an approximation since the electron has mass-energy, and since
the wave equation of the neutrino probably also has mass terms. Since it
was impossible to account for both proper mass and electroweak gauge, a
mechanism of spontaneous symmetry breaking was constructed. The Higgs
boson (which was thought of as able to reintroduce masses into wave equa-
tions) was finally observed at very high energy (≈ 126 GeV). However, this
still does not transform the electroweak gauge into a theory compatible with
mass and gravitation. In reality each proper mass is replaced by a coupling
coefficient with the Higgs boson. So the Higgs boson, even though it exists,
does not explain much. And the existence of such a scalar field with high
mass was suspected as early as de Broglie’s theory of the photon [55, 56].

What we now know how to do is very different and much more innovative
since we are able to restore the compatibility of the covariant electroweak
derivation that we just studied with equations (2.10) to (2.13). We are able

6. The improved wave equation tolerates two different mass terms for the electron (see
Chapter 1).
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to restore this because the improved equation that we obtained as a wave
equation may be recast into a form that seems uncrossed and acting on only
one chiral spinor. And this is easily generalized. Maintaining mass terms
in the wave equation will allow us in Chapter 4 to directly put together
gravitation and other forces in the wave equations. It is thus an important
improvement towards the unification of all interactions. We are even able to
conserve the form of the mass term vϕ̂1m of the improved wave equation:

0 = −iDL̂1 + lvL̂1; 0 = −iD̂R1 + rv̂R1,

0 = −iD̃L8
+mlvL

8
; 0 = −iDR̃8 +mrv̂R̃

8. (2.76)

We do not suppose that the l, r, ml and mr coefficients are all equal. The
unitary vector v remains defined from the four spinor waves by (2.34). We
simplify the following study by considering only the wave of the electron and
of the neutrino–monopole, as a beginning. We will derive the properties
of the positron and antineutrino–monopole by changing the sign of the
differential terms of the wave equation, and exchanging η and ξ terms.
With the form obtained in (2.61) for the derivation with gauge terms, the
wave equations (2.76) become:

0 = ∇̂R1 + ig1B̂R
1 + irv̂R1, (2.77)

0 = ∇L̂1 + i
g1
2
BL̂1 − i

g2
2
[(W 1 + iW 2)L

8 −W 3L̂1] + ilvL̂1, (2.78)

0 = ∇̃L8
+ i

g1
2
BL

8 − i
g2
2
[(W 1 − iW 2)L̂1 +W 3L

8
] + imlvL

8
, (2.79)

0 = ∇R̃8 + ig1pB̂R̃
8 + imrv̂R̃

8. (2.80)

We may remark that the coefficients of B are the same only for L1 and
L8. So left waves, turning in the same manner in the chiral gauge, can be
mixed in the SU(2) gauge group. Comparing with potentials we may see
that these equations are indeed wave equations with two different spinors.
We now see how it is possible to use the invariance of each wave equation.

2.3 Extended invariance

With the similitude induced by any dilator M in Cl3:

D′1
R = R ′1R̃ ′1 =MR1M̃R

1
=MR1R̃1M̃ =MD1

RM̃,

J′l =MJlM̃ ; ρ′ = rρ; m = m′r; (m = l, r,ml,mr), (2.81)

m′v′ =
m

r

J′l
ρ′

=
m

r

MJlM̃

rρ
= m

M

reiθ
v
M̃

re−iθ
= mM

−1
vM̂−1,

Mm′v′L̂ ′1 = mvM̂−1M̂L̂1 = mvL̂1, (2.82)
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we simplify the wave equations (2.77)–(2.80) with:

p1L =
g1
2
B + lv = b + lv; wj =

g2
2
W j , j = 1, 2, 3,

p1R = g1B + rv = 2b + rv; p8L =
g1
2
B +mlv = b +mlv, (2.83)

p8R = g1pB +mrv = 2pb +mrv.

To obtain the relativistic invariance of the equation of L1, for instance, we
must have for the gauge potentials the same variance as the differential
term. And this term is covariant which means it satisfies ∇ =M∇′M̂ . It is
the same with p, b and for the wj which are also covariant vectors because
these vectors incorporate the g1 and g2 charges. We have:

0 = ∇̂R1 + ip̂1RR
1 = M̃ [∇̂′R′1 + ip̂′1RR

′1], (2.84)

0 = ∇L̂1 + ip1LL̂
1 − i[(w1 + iw2)L

8 − w3L̂1)]

=M
[
∇L̂′1 + ip′

1
LL̂

′1 − i[(w′1 + iw′2)L
′8 − w′3L̂′1]

]
; (2.85)

0 = ∇L8
+ ip8LL

8 − i[(w1 − iw2)L̂1 +w3L
8
)];

=M
[
∇L′8

+ ip′8L )L
′8 − i[(w′1 − iw′2)L̂′1 +w′3L

8
]
]
; (2.86)

0 = ∇̂R̃8 + ip̂8RR̃
8 = M̃

[
∇̂′R̃′8 + ip̂′8RR̃

′8]. (2.87)

This provides the form invariance of the wave equations, as in the case of
the lone electron that we studied in Chapter 1.

The gauge transformations are generated by P0, P1, P2 and P3. This
gives to us a group with four parameters a0, a1, a2 and a3. We recall the
definition of the exponential function

exp(a0P0) =

∞∑
n=0

(a0P0)
n

n!
; exp(ajPj) =

∞∑
n=0

(a1P1 + a2P2 + a3P3)
n

n!
.

(2.88)

Since these operators were defined in Cl3 ×Cl3 and since they are different
for right and left waves we will study them with the Cl3 × Cl3 form (see
B.1.2) of these right and left spinors:

Ψ1
R =

(
R1 0

)
; Ψ1

L =
(
L1 0

)
; Ψ8

R =
(
0 R̃8

)
; Ψ8

L =
(
0 L̃8

)
. (2.89)

With P0 we have

P0(Ψ
8
R) = 2pΨ8

Rγ21; exp(a0P0)(Ψ
8
R) = Ψ8

R exp[2pa0γ21],

P0(Ψ
1
R) = 2Ψ1

Rγ21; exp(a0P0)(Ψ
1
R) = Ψ1

R exp[2a0γ21], (2.90)

P0(ΨL) = ΨLγ21; exp(a0P0)(ΨL) = ΨL exp[a0γ21].
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Next we let:

s = θu = θ(s1P1 + s2P2 + s3P3); u
2 = s21 + s22 + s23 = 1,

U = es = eθu, (2.91)

and we have:

Ψ′1
R = UΨ1

R = Ψ1
R; Ψ′8

R = UΨ8
R = Ψ8

R,

Ψ′
L = UΨL = cos(θ)ΨL + sin(θ)u(ΨL),

u(ΨL) = s1ΨLγ3i+ s2ΨLγ3 + s3ΨL(−i), (2.92)

ΨL = U−1Ψ′
L = cos(θ)Ψ′

L − sin(θ)u(Ψ′
L)

= cos(θ)Ψ′
L − sin(θ)[s1Ψ

′
Lγ3i+ s2Ψ

′
Lγ3 + s3Ψ

′
L(−i)].

Since P0 commutes with s we have:

exp(S) = exp(a0P0)e
s = es exp(a0P0); exp(−S) = exp(S)−1. (2.93)

The set of the exp(S) is a U(1)× SU(2) Lie group. The local gauge trans-
formation uses the derivative of the exponential function and satisfies

Ψ′ = [exp(S)](Ψ) ; D = σµDµ ; D′ = σµD′
µ, (2.94)

and so DµΨ is replaced by D′
µΨ

′ such that:

(0 D′)Ψ′ = (0 ∇)Ψ′ +G′(Ψ′) = exp(S)[(0 ∇)Ψ +G(Ψ)], (2.95)

G′(Ψ′) = exp(S)(X + Y ); X =
[
(0 ∇)[exp(−S)]

]
(Ψ′); Y = G(Ψ).

(2.96)

The transformation of the gauge potentials thus has two parts: a part that
comes from the derivative of the exponential function and another that
comes from the non-commutation of exp(S) with Pj .

2.3.1 The U(1) gauge group generated by P0

Since P0 commutes with s, the relation between w′0 = b′ and w0 = b is
reduced to only the part coming from the derivative, and we get:

b′µ = bµ − ∂µa
0. (2.97)

The different space-time vectors that we may form from the wave with spin
1/2 to obtain the gauge potentials wj , where j = 0, 1, 2, 3, in a similitude
must behave like Jl which is the sum of D1

R, D8
R, D1

L and D8
L. In addition
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to these vectors we have:

D1
RL = D1 = R1σ1L̃

1 + L1σ1R̃
1; d1RL = D2 = i(R1σ1L̃

1 − L1σ1R̃
1),

D18
L = L1L8 + L̃8L̃1; d18L = i(L1L8 − L̃8L̃1),

D18
RL = R1σ1L

8 + L̃8σ1R̃
1; d18RL = i(R1σ1L

8 − L̃8σ1R̃
1), (2.98)

D18
R = R1R8 + R̃8R̃1; d18R = i(R1R8 − R̃8R̃1),

D81
RL = R̃8σ1L̃

1 + L1σ1R
8; d81RL = i(R̃8σ1L̃

1 + L1σ1R
8),

D8
RL = R̃8σ1L

8 + L̃8σ1R
8; d8RL = i(R̃8σ1L

8 − L̃8σ1R
8).

All these D vectors transform in a similitude defined by M into D′ =MDM̃ ,
like Jl. With (2.90) we have:

L̃′8 = e−ia0

L̃8; R̃′8 = e2ipa
0

R̃8; L′1 = e−ia0

L1; R′1 = e2ia
0

R1, (2.99)

R̃′8 = eia
0

R̃8; L̃′8 = e−2ipa0

L̃8; R′1 = eia
0

R1; L′1 = e−2ia0

L1.

This gives

R′1σ1L̃
′1 = e3ia

0

R1σ1L̃
1; R′1σ1L

′8 = e3ia
0

R1σ1L
8,

L′1L′8 = L1L8; R̃′8σ1L̃
′1 = ei(1+2p)a0

R̃8σ1L̃
1, (2.100)

R′1R′8 = e2i(1−p)a0

R1R8; R̃′8σ1L
′8 = ei(1+2p)a0

R̃8σ1L
8.

We also have

D′1
R = R′1R̃′1 = e2ia

0

R1e−2ia0

R̃1 = R1R̃1 = D1
R, (2.101)

and similarly:

D′8
R = D8

R; D′1
L = D1

L; D′8
L = D8

L; D′8
R = D8

R; J′l = Jl; v′ = v. (2.102)

We then get:

∇̂R′1 = ∇̂(e2ia
0

R1) = e2ia
0

[2i(∇̂a0)R1 + ∇̂R1]

= e2ia
0

[2i(∇̂a0)R1 − i(2b̂ +mv̂)R1]

= i[2e2ia
0

(∇̂a0 − b̂)−mv̂e2ia
0

]R1 = −i(2b̂′ +mv̂)R′1, (2.103)

b̂′ = b̂− ∇̂a0. (2.104)

The gauge invariance with P0 of the other parts of the leptonic wave acts in
the same way; this is the case with (2.104) as well as for Ψ8

R or Ψ1
R or Ψn

L.

2.3.2 The SU(2) gauge group
This gauge group acts only on the left part of the waves in the lepton

case. Then we only need to think about ΨL = Ψ1
L + Ψ8

L. The gauge
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transformation reads:

Ψ′
L = U(ΨL) = cos(θ)ΨL + sin(θ)[s1ΨLγ3 + s2ΨLγ3(−i) + s3ΨL(−i)].

(2.105)
The gauge invariance means that with

D = (0 D) = ∂∂∂ +G; ∂∂∂ = (0 ∇); (0 D′) = D′ = ∂∂∂ +G′, (2.106)

we must have
D′Ψ′

L = U(DΨL), (2.107)
which necessitates:

G′(Ψ′
L) = U(X) + U(Y ); X = [∂∂∂(U−1)](Ψ′

L); Y = G(ΨL) (2.108)
X = ∂∂∂(cos θ)Ψ′

L − [∂∂∂(s1 sin θ)Ψ
′
Lγ3 + ∂∂∂(s2 sin θ)Ψ

′
Lγ3(−i)

+ ∂∂∂(s3 sin θ)Ψ
′
L(−i)].

We then get:

wj = (0 wj); j = 1, 2, 3, (2.109)

U(X) = −[s1∂∂∂θ +
sin(2θ)

2
∂∂∂s1 + sin2(θ)(s2∂∂∂s3 − s3∂∂∂s2)]Ψ

′
Lγ3

− [s2∂∂∂θ +
sin(2θ)

2
∂∂∂s2 + sin2(θ)(s3∂∂∂s1 − s1∂∂∂s3)]Ψ

′
Lγ3(−i) (2.110)

− [s3∂∂∂θ +
sin(2θ)

2
∂∂∂s3 + sin2(θ)(s1∂∂∂s2 − s2∂∂∂s1)]Ψ

′
L(−i).

U(Y ) = cos(2θ)[w1Ψ′
Lγ3 +w2Ψ′

Lγ3(−i) +w3Ψ′
L(−i)] + sin(2θ) (2.111)

× [(s2w
3 − s3w

2)Ψ′
Lγ3i+ (s3w

1 − s1w
3)Ψ′

Lγ3(−i)

+ (s1w
2 − s2w

1)Ψ′
L(−i)]

+ 2 sin2(θ)(s1w
1 + s2w

2 + s3w
3)[s1Ψ

′
Lγ3 + s2Ψ

′
Lγ3(−i) + s3Ψ

′
L(−i)].

Hence we finally have

w′1 = −[s1∂∂∂θ +
sin(2θ)

2
∂∂∂s1 + sin2(θ)(s2∂∂∂s3 − s3∂∂∂s2)]

+ cos(2θ)w1 + sin(2θ)(s2w
3 − s3w

2) + 2 sin2(θ)s1(s1w
1 + s2w

2 + s3w
3),

w′2 = −[s2∂∂∂θ +
sin(2θ)

2
∂∂∂s2 + sin2(θ)(s3∂∂∂s1 − s1∂∂∂s3)] (2.112)

+ cos(2θ)w2 + sin(2θ)(s3w
1 − s1w

3) + 2 sin2(θ)s2(s1w
1 + s2w

2 + s3w
3),

w′3 = −[s3∂∂∂θ +
sin(2θ)

2
∂∂∂s3 + sin2(θ)(s1∂∂∂s2 − s2∂∂∂s1)]

+ cos(2θ)w3 + sin(2θ)(s1w
2 − s2w

1) + 2 sin2(θ)s3(s1w
1 + s2w

2 + s3w
3).

We may note the 3-order symmetry of these equalities: SU(2) is a 3-
dimensional Lie group. This symmetry is no longer an “internal” symmetry
but an invariance under a geometrical group emerging from the properties
of multiplication in the Cl3 algebra.
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Gauge generated by P3

We arrive at the one-parameter group generated by P3 with a0 = s1 =
s2 = 0 and s3 = 1. We thus get:

S = s = θP3,

Ψ′ = [exp(S)](Ψ) = P−(Ψ) + cos(θ)P+(Ψ) + sin(θ)P3(Ψ) (2.113)

=
(
R1 + e−iθL1 R̃8 + eiθL̃8

)
.

So we have:

R′1 = R1; R̃′8 = R̃8; L′1 = e−iθL1; L̃′8 = eiθL̃8; J′l = Jl,

L′1 = L1; L̃′8 = L̃8; R′1 = e−iθR1; R̃′8 = eiθR̃8. (2.114)

We also have w′0
µ = w0

µ, which means b′ = b. The equations (2.112) become

w′1 = cos(2θ)w1 − sin(2θ)w2,

w′2 = cos(2θ)w2 + sin(2θ)w1,

w′3 = −i∇θ +w3. (2.115)

And we have

D′18
L − id′18L = 2L′1L′8 = 2e−iθL1e−iθL8 = e−2iθ(D18

L − id18L )

= cos(2θ)D18
L − sin(2θ)d18L − i[sin(2θ)D18

L + cos(2θ)d18L ],

D′18
L = cos(2θ)D18

L − sin(2θ)d18L , (2.116)

d′18L = sin(2θ)D18
L + cos(2θ)d18L .

This is compatible with

W 1 = k(D18
L ); W 2 = k(d18L ); w1 =

g2
2
k(D18

L ); w2 =
g2
2
k(d18L ), (2.117)

where k is any linear operator. The g2 coefficient called the “coupling con-
stant” is necessary for transforming the contravariant vector W j into the
covariant vector wj (see 1.7).

Gauge generated by P1

We now have a0 = s2 = s3 = 0 and s1 = 1. We then have:

S = s = θP1,

Ψ′ = [exp(S)](Ψ) = P−(Ψ) + cos(θ)P+(Ψ) + sin(θ)P1(Ψ) (2.118)

=
(
R1 + cos(θ)L1 + i sin(θ)L̃8 R̃8 + cos(θ)L̃8 + i sin(θ)L1

)
.
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So we get:

R′1 = R1; R′8 = R8; L′1 = L1; L′8 = L8,

L′1 = cos(θ)L1 + i sin(θ)L̃8; R′1 = cos(θ)R1 + i sin(θ)R̃8, (2.119)

L̃′8 = cos(θ)L̃8 + i sin(θ)L1; R̃′8 = cos(θ)R̃8 + i sin(θ)R1.

Hence we have:

D′1
L = L′1L̃′1 = [cos(θ)L1 + i sin(θ)L̃8][cos(θ)L̃1 − i sin(θ)L8]

= cos2(θ)L1L̃1 + i sin(θ) cos(θ)(L̃8L̃1 − L1L8) + sin2(θ)L̃8L8,

D′8
L = L̃′8L′8 = [cos(θ)L̃8 + i sin(θ)L1][cos(θ)L8 − i sin(θ)L̃1] (2.120)

= sin2(θ)L1L̃1 − i sin(θ) cos(θ)(L̃8L̃1 − L1L8) + cos2(θ)L̃8L8.

We derive the following:

D′1
L +D′8

L = D1
L +D8

L; J′l = Jl; ρ
′
l = ρl; v′ = v. (2.121)

The mass term is thus invariant under the gauge transformation. We also
derive from (2.120):

D′8
L −D′1

L = cos(2θ)(D8
L −D1

L) + sin(2θ)d18L . (2.122)

Next we have:

2L′1L′8 = D′18
L − id′18L (2.123)

= 2[cos(θ)L1 + i sin(θ)L̃8][cos(θ)L8 − i sin(θ)L̃1]

= D18
L − i[cos(2θ)d18L − sin(2θ)(D8

L −D1
L)].

The equations (2.112) become:

w′2 = cos(2θ)w2 − sin(2θ)w3,

w′3 = cos(2θ)w3 + sin(2θ)w2,

w′1 = −∇θ +w1. (2.124)

All this is then compatible with:

W 3 = k(D8
L −D1

L). (2.125)

Gauge generated by P2

We now have a0 = s1 = s3 = 0 and s2 = 1. We then get:

ΨL =
(
L1 L̃8

)
; P2(ΨL) = ΨLγ3 =

(
L̃8 −L1

)
, (2.126)

S = s = θP2,

Ψ′ = [exp(S)](Ψ) = P−(Ψ) + cos(θ)P+(Ψ) + sin(θ)P2(Ψ) (2.127)

=
(
R1 + cos(θ)L1 + sin(θ)L̃8 R̃8 + cos(θ)L̃8 − sin(θ)L1

)
.
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Hence we have:

R′1 = R1; R′8 = R8, D′1
R = D1

R; D′8
R = D8

R; L′1 = L1; L′8 = L8,

L′1 = cos(θ)L1 + sin(θ)L̃8; R′1 = cos(θ)R1 − sin(θ)R̃8, (2.128)

L̃′8 = cos(θ)L̃8 − sin(θ)L1; R̃′8 = cos(θ)R̃8 + sin(θ)R1.

We may notice that the changes of sign when we pass from the wave of the
particle to the wave of the antiparticle are the origin of what we saw in
2.1.2: the charge conjugation changes the rotation of the matrix indices for
the doublet of right waves. We then get:

D′1
L = L′1L̃′1 = [cos(θ)L1 + sin(θ)L̃8][cos(θ)L̃1 + sin(θ)L8]

= cos2(θ)L1L̃1 + sin(θ) cos(θ)(L̃8L̃1 + L1L8) + sin2(θ)L̃8L8,

D′8
L = L̃′8L′8 = [cos(θ)L̃8 − sin(θ)L1][cos(θ)L8 − sin(θ)L̃1] (2.129)

= sin2(θ)L1L̃1 − sin(θ) cos(θ)(L̃8L̃1 + L1L8) + cos2(θ)L̃8L8.

We arrive at the following:

D′1
L +D′8

L = D1
L +D8

L; J′l = Jl. (2.130)

We derive also from (2.129):

D′8
L −D′1

L = cos(2θ)(D8
L −D1

L)− sin(2θ)D18
L . (2.131)

Next we have:

2L′1L′8 = D′18
L − id′18L (2.132)

= 2[cos(θ)L1 + sin(θ)L̃8][cos(θ)L8 − sin(θ)L̃1]

= −id18L + [cos(2θ)D18
L + sin(2θ)(D8

L −D1
L)].

The equations (2.112) become:

w′3 = cos(2θ)w3 − sin(2θ)w1,

w′1 = cos(2θ)w1 + sin(2θ)w3,

w′2 = −∇θ +w2. (2.133)

This is compatible with (2.117) and (2.125).
The very short range of the weak interaction was thought to be linked to

a strong mass of the potential vectors. The expected wave equations were:

(□+m2)W k = 0; (□+m′2)Z0 = 0. (2.134)

The link between potential A, field F and electric current j is, in the elec-
tromagnetic case:

F = ∇Â; ∇F̂ = j; □A = ∇∇̂A = ∇F̂ = j. (2.135)
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The relation between potential X and current D8
L −D1

L may be:

0 = (□+m2)X; □X = −m2X = D8
L −D1

L; (2.136)

We then may use:

W 3 = k(D8
L −D1

L); W 1 = k(D18
L ); W 2 = k(d18L ). (2.137)

We may also introduce here a constant k = 1 since the constant g2 is
already a factor of W j in the wave equations. Hence the simplest form of
the previous relations is k = id:

W 3 = D8
L −D1

L; W 1 = D18
L ; W 2 = d18L . (2.138)

2.3.3 Simplification of the equations
Since W 3 and B are, like Jl, linear combinations of the chiral currents

D1
R, D8

R, D1
L and D8

L, and since L̃1L̂1 = 0, we have with (2.137):

(W 1 + iW 2)L
8 −W 3L̂1 = i[2L̃8L̃1L

8 − (L̃8L8 − L1L̃1)L̂1]

= i[L̃8(2L̃1L
8 − L8L̂1)]. (2.139)

And we have:

L̃1L
8
= 2

(
0 0

−η12 η11

)(
η81 0
η82 0

)
=

(
0 0

−a2 0

)
= −a2

σ1 − iσ2
2

,

L8L̂1 = L̃1L
8
= a2

σ1 − iσ2
2

= −L̃1L
8
, (2.140)

(W 1 + iW 2)L
8 −W 3L̂1 = −3L̃8L8L̂1 = −3D8

LL̂
1

= −3(D8
L −D1

L)L̂
1 = −3W 3L̂1.

And similarly we arrive at

(W 1 − iW 2)L̂1 +W 3L
8
= 2L1L8L̂1 + (L̃8L8 − L1L̃1)L

8

= [2L1L8L̂1 − L1L̃1L
8
] = −3L1L̃1L

8
= −3D1

LL
8

(2.141)

= 3(L̃8L8 − L1L̃1)L
8
= 3W 3L

8
.

Then the equations of the left waves can be expressed as follows, by simpli-
fying the three terms W j :

0 = (∇+ ib + 3iw3 + ilv)L̂1; 0 = (∇+ ib− 3iw3 + imlv)L̂
8. (2.142)

The four spinor wave equations become

i∇η1 = (b + 3w3 + lv)η1; i∇̂ξ1 = (2b̂ + rv̂)ξ1, (2.143)

i∇̃η8 = (b− 3w3 +mlv)η
8; i∇ξ8 = (2pb̂ +m5v̂)ξ

8. (2.144)
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With the ln and rn in (2.10) until (2.13), this corresponds to:

a1 = b + 3w3; l1 = a1 + lv = b + 3w3 + lv; 0 = −i∇η1 + l1η1, (2.145)

a2 = 2b; r1 = a2 + rv = 2b + rv; 0 = −i∇̂ξ1 + r̂1ξ1, (2.146)

a3 = b− 3w3; l8 = a3 +mlv = b− 3w3 +mlv; 0 = −i∇η8 + l8η8,
(2.147)

a4 = 2pb; r8 = a4 +mrv = 2pb +mrv; 0 = −i∇̂ξ8 + r̂8ξ8. (2.148)

2.3.4 Double link with the Lagrangian density

From the left side we multiply (2.145) by η1†, (2.146) by ξ1†, (2.147) by
η8† and (2.148) by ξ8†:

0 = L1 = −iη1†∇η1 + η1†l1η1, (2.149)

0 = L2 = −iξ1†∇̂ξ1 + ξ1†r̂1ξ1, (2.150)

0 = L3 = −iη8†∇̃η8 + η8†l8η8, (2.151)

0 = L4 = −iξ8†∇ξ8 + ξ8†r̂8ξ8, (2.152)

0 = L =
m

kl
L1 +

m

kr
L2 +

m

kml
L3 +

m

kmr
L4. (2.153)

From this construction the Lagrangian density L is stationary, since it is
identically null at any point in space-time, and not only on average. No
physical principle is used to obtain this result: the Lagrangian density is
null as a sum of null terms. The principle of least action is no longer
a quasi-metaphysical principle. We will read each of the terms of this
Lagrangian density as the sum of a real part and an imaginary part. We
may first remark that we will repeat the same procedure four times 7, and
thus it is enough to completely work out the only L1 part. We have:

L1 =
1

2
(L1 + L1†) +

1

2
(L1 − L1†),

L1 + L1† = −iη1†σµ(∂µη
1) + η1†l1η1 + i(∂µη

1†)σµη1 + η1†l1†η1

= −iη1†σµ(∂µη
1) + i(∂µη

1†)σµη1 + η1†(l1 + l1†)η1. (2.154)

L1 − L1† = −iη1†σµ(∂µη
1) + η1†l1η1 − i(∂µη

1†)σµη1 − η1†l1†η1

= −i∂µ(η1†σµη1) + η1†(l1 − l1†)η1.

7. When we pass from η to ξ we replace σµ with σ̂µ, and so we have only three signs
to change; otherwise all is similar.
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Each ln and rn is a sum of vectors, and space-time vectors form the self-
adjoint part of the space algebra. We then have:

1

2
(l1 + l1†) = l1 = l1µσ

µ;
1

2
(l1 − l1†) = 0,

0 =
1

2
(L1 + L1†) =

1

2
[−iη1†σµ(∂µη

1) + i(∂µη
1†)σµη1] + η1†l1η1, (2.155)

0 =
1

2
(L1 − L1†) =

1

2
[−iη1†σµ(∂µη

1)− i(∂µη
1†)σµη1] = − i

2
∂µD

1µ
L .

This last relation means that the D1
L current is conservative. And since the

three other equations behave similarly, the D1
R, D8

L and D8
R currents are

also conservative. Therefore the Ln terms which have a null imaginary part
are real, and thus equal to their real part:

0 = Ln = ℜ(Ln). (2.156)

Now we completely calculate this equation, arriving at real numbers with
the help of the following real matrix representation:

η1 =

(
a+ ib
c+ id

)
=


a −b
b a
c −d
d c

 , (2.157)

η1† =

(
a b c d
−b a −d c

)
; −iη1† =

(
−b a −d c
−a −b −c −d

)
, (2.158)

∇ = σµ∂µ =


∂0 − ∂3 0 −∂1 −∂2

0 ∂0 − ∂3 ∂2 −∂1
−∂1 ∂2 ∂0 + ∂3 0
−∂2 −∂1 0 ∂0 + ∂3

 , (2.159)

l1 =


l10 + l13 0 l11 l12

0 l10 + l13 −l12 l11

l11 −l12 l10 − l13 0
l12 l11 0 l10 − l13

 . (2.160)

The matrix of η1 contains a, b, c, d once in each column, and it is the same for
each row in η1† and in −iη1†. There are only two − signs in the right column
of η1. There are two − signs and two + signs in a row and either four + or
four − in the other row of η1† and of −iη1†. For the 4×4 matrices, each row
and each column contains exactly once the ∂µ or the l1µ. We count exactly
eight + signs and eight − signs in the ∇ matrix, and only four − signs in
the p1 matrix, and these two matrices are symmetric. All this is obviously
not at random but emerges from the properties of multiplication in the
Cl3 algebra, which themselves come from the anticommutative property of
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orthogonal vectors. Thus the Lagrangian density L1 satisfies:

0 = L1 =+ aδ0b+ cδ0d+ (aa+ bb+ cc+ dd)l10

+ bδ1c+ dδ1a+ (ac+ bd+ ca+ db)l11 (2.161)

+ aδ2c+ bδ2d+ (ad− bc− cb+ da)l12

+ bδ3a+ cδ3d = (aa+ bb− cc− dd)l13.

where we use the notation:

uδµv := u(∂µv)− (∂µu)v. (2.162)

We remark that all the differential terms in the Lagrangian density are δµ
terms. Each variable a, b, c, d is present once and only once with each δµ.
And similarly each variable a, b, c, d is present once and only once with each
pµ1 . These are all the properties that are necessary and sufficient to allow us
to obtain the wave equations from the Lagrange equations, which is what
we see now. The Lagrange equation relative to the parameter a is:

∂L
∂a

= ∂µ

( ∂L
∂(∂µa)

)
, (2.163)

which gives the wave equation:

∂0b− ∂1d+ ∂2c− ∂3b+ 2(al10 + cl11 + dl12 + al13)

= ∂0(−b) + ∂1d+ ∂2(−c) + ∂3b. (2.164)

The differential terms of the right part are exactly the opposites of the
differential terms of the left part because the Lagrangian density contains
only δµ. And there is exactly one term of each variable because each variable
is contained once and only once with each value of µ. The origin of these
properties is indeed the structure of the Cl3 algebra. The factor of 2 comes
from the fact that each variable is present twice as a factor of each l1µ, for the
same reasons of structure and signs that result from the anticommutation.
As a result we can simplify this wave equation:

0 = ∂0b− ∂1d+ ∂2c− ∂3b+ (al10 + cl11 + dl12 + al13). (2.165)

We can indeed use the same method to derive each Lagrange equation. For
the b variable we obtain:

− ∂0a+ ∂1c+ ∂2d+ ∂3a+ 2(bl10 + dl11 − cl12 + bl13)

= ∂0(a) + ∂1(−c) + ∂2(−d) + ∂3(−a),
0 = −∂0a+ ∂1c+ ∂2d+ ∂3a+ (bl10 + dl11 − cl12 + bl13). (2.166)

Next, these two wave equations may be combined into one by introducing
a+ ib = η11 and c+ id = η12 :

0 = (∂0 − ∂3)η
1
1 + (−∂1 + i∂2)η

1
2 + i[(l10 + l13)η11 + (l11 − il12)η12 ]. (2.167)
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We continue the calculation with the Lagrange equations relative to the c
and d parameters. We simplify and group these equations and this gives:

0 = (−∂1 − i∂2)η
1
1 + (∂0 + ∂3)η

1
2 + i[(l11 + il12)η11 + (l10 − l13)η12 ]. (2.168)

Finally, we combine these two equations into one:

0 =

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)(
η11
η12

)
+ i

(
l10 + l13 l11 − il12

l11 + il12 l10 − l13

)(
η11
η12

)
0 = −i∇η1 + l1η1. (2.169)

This calculation is often presented in a very concise manner, using ψ – which
is a column matrix with four complex components – as if it could be a real
number. This ultra-concise calculation is nevertheless always correct, and
our complete and detailed calculation is sufficient proof: the equality 0 = L
is the necessary consequence of the wave equations of the four η1, ξ1, η8 and
ξ8. Next this real L density, as a result of the anticommutation of the basis
vectors that is itself a result of the equality uu = u·u for any vector u, has as
many − signs as + signs. And these signs are distributed such that each real
equation is obtained automatically as a Lagrange equation from the only
equation 0 = L 8 . Moreover, when we vary the density with regard to one of
the spinors, we calculate as if the potentials do not depend on these spinors.
And indeed we will see that they depend on the spinors as in any true field
theory. We will also see that all terms (potentials and mass) present in
the Lagrangian density come down in fine to linear combinations of the
chiral currents Dn

R and Dn
L. It happens that the calculation of the Lagrange

equations is nevertheless correct as a result of identities that suppress this
dependence. It is the reason why the gauge potentials seem exterior to the
wave even if they strictly depend on the spinors. To see this we consider
for instance the term: Bµη

1†σµη1 = η1†Bη1. When we derive this term in
η1, we suppose that this derivation does not affect B. Nevertheless this
potential B may include a term depending on D1

L = L1L̃1. In practice this
term gives no supplementary contribution to the Lagrange equation because

η1†L1 =
√
2
(
η11 η12

)(0 −η12
0 η11

)
=

√
2
(
0 −η11η12 + η12η

1
1

)
= 0. (2.170)

η1†D1
Lη

1 = η1†L1L̃1η1 = 0.

8. This double link between the wave equation and Lagrangian density is not a general
property of Clifford algebra. There are dimensions and signatures that ensure an auto-
matic derivation of wave equations from the only equation corresponding to the Clifford
real part, but other dimensions or signatures do not ensure the same. To explain this
it is enough to consider Cl1,4, the Clifford algebra of Kaluza’s space-time which has a
supplementary dimension of space. The reversion and consequently the multiplication
on the left side by Ψ̃ does not satisfy the properties giving the double link between the
wave equation and Lagrangian density. Then there is no general principle behind the
automatic behaviour of the Lagrangian formalism in relativistic quantum physics: it is
only an inevitable consequence of the particular properties of space-time. These special
features come from the dimension of time and space that are always respectively one and
three in any tangent space to the space-time manifold of GR.
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These identities also hide the great similarity between the wave equations of
relativistic quantum physics and Einstein’s equations of gravitation, which
are highly nonlinear.

In Lagrangian physics, the Lagrange equation is obtained by neglecting
the term remaining after an integration by parts, which supposes that these
terms may be neglected. In fact the thing that is neglected is just the proof.
It was never really understood why Maxwell’s equations governing the elec-
tromagnetic field or Einstein’s equations governing the gravitational field
must necessarily be derived from a Lagrangian formalism. The Lagrange
equations are indeed used to obtain a part of laws of electromagnetism, the
part that links derivatives of fields to currents (details in A.3.6). This cal-
culation is perfectly correct but laws linking fields to potentials do not come
from Lagrange equations. Moreover the propagation of the fields as far from
the sources as desired, is not accounted for. This propagation ad infinitum
without attenuation other than due to the distance from the source could
invalidate the cancellation of the terms remaining after integration by parts:
the increase of the volume exactly offsets the decrease in the magnitude of
the potential terms.

If this Lagrangian physics acts perfectly, if the terms which could not
disappear are fortunately suppressed, this does not come from a metaphys-
ical principle but rather results from the particular properties of the Cl3
algebra. The mechanism has a purely algebraic origin, and is always valid
for all interactions of physics, since it is directly linked to the dimension of
space and the signature of space-time geometry. The equivalence between
the usual form and the completely invariant form of the wave equations im-
plies the obtaining of the real equations forming the system of either linear
or improved Dirac equation. This necessary obtaining is called the Lagrange
equations.

Therefore we are always correct when we use Noether’s theorem to link
conservative quantities to the invariance of the Lagrangian density. We note
here that it is enough to change the dimension or the signature of space-
time to eventually lose the Lagrangian mechanism that is essential for the
functioning of matter dynamics. 9

The detailed study that we carried out on the L1 part of the Lagrangian
density may indeed be extended to the three other parts of the leptonic
wave and also to the antileptonic wave, which is the same wave simply with
the change of ∇ into −∇ in the wave equation and the exchange of left and
right terms, and thus also in the Lagrangian density that is its real part.

9. This is a sufficient reason for the general failure of theories with a great number of
dimensions to obtain a realistic picture of the Standard Model of quantum physics. It is
the same for any theory based on Riemannian manifolds, and using only an indeterminate
n dimension.
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2.3.5 Iteration and equations of gauge fields

For the leptonic wave the Lagrangian density of the Standard Model is
made of two parts: a part describing the quantum wave of the electron and
its neutrino and another part describing the gauge bosons. This means B
and Wj , which are necessary for the gauge invariance. We automatically
obtained the lepton part of the Lagrangian density from the equation of
the wave with spin 1/2. It is not at all the same for the boson part that
is not relativistically linked to spinors. We saw in the first chapter that
the classical link between potentials and fields is not the true one since the
electromagnetic field is a field of operators. The existence of a Lagrangian
density for the boson part is questionable. We have nevertheless the possi-
bility of completely avoiding this not-fully-justified part of the Lagrangian
density by the use of the fully-justified part and only this part. This part of
the Lagrangian density comes from the fermionic wave equations which we
will use with a functional recursive form. We again use the decomposition
(2.89) of Ψl into its four chiral parts. We let:

p1 := l1; p2 := r1; p3 := l8; p4 := r8; p−1
n = p−1

nµ σ̂
µ. (2.171)

With (2.145) to (2.148) we get

η1 = ip−1
1 ∇η1; ∇η1 = −ip1η1, (2.172)

ξ1 = ip̂−1
2 ∇̂ξ1; ∇̂ξ1 = −ip̂2ξ1, (2.173)

η8 = ip−1
3 ∇̃η8; ∇̃η8 = −ip3η8, (2.174)

ξ8 = ip̂−1
4 ∇ξ8; ∇ξ8 = −ip̂4ξ8. (2.175)

We then get by iterating these equations:

η1 = ip−1
1 ∇(ip−1

1 ∇η1) = ip−1
1 ∇[ip−1

1 ∇(ip−1
1 ∇η1)] (2.176)

ξ1 = ip̂−1
2 ∇̂(ip̂−1

2 ∇̂ξ1) = ip̂−1
2 ∇̂[ip̂−1

2 ∇̂(ip̂−1
2 ∇̂ξ1)], (2.177)

η8 = ip−1
3 ∇̃(ip−1

3 ∇̃η8) = ip−1
3 ∇̃[ip−1

3 ∇̃(ip−1
3 ∇̃η8)], (2.178)

ξ8 = ip̂−1
4 ∇(ip̂−1

4 ∇ξ8) = ip̂−1
4 ∇[ip̂−1

4 ∇(ip̂−1
4 ∇ξ8)]. (2.179)

These equations are not optional; they are an obligatory consequence of the
wave equation of each spinor. Wave equations, iterated once, allow us to
define gauge fields from potential and mass terms included in the p−1

n . The
Standard Model has problems with the Yang–Mills fields, and we can now
see one reason for these difficulties: Yang–Mills fields are not independent
from the quantum wave since they are defined from wave equations. And
there are four kinds of definitions following the four kinds of representations
of Cl∗3. We now replace the column-spinors ξ and η by the corresponding
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elements in Cl3. We get:

∇L̂1 = −ip1L̂1; ∇̂(∇L̂1) = −i∇̂(p1L̂
1), (2.180)

∇̂R1 = −ip̂2R1; ∇(∇̂R1) = −i∇(p̂2R
1), (2.181)

∇L8
= −ip3L

8
; ∇̂(∇L8

) = −i∇̂(p3L
8
), (2.182)

∇̂R̃8 = −ip̂4R̃8; ∇(∇̂R̃8) = −i∇(p̂4R̃
8). (2.183)

We now define the gauge fields F as:

∇̂(p1L̂
1) = F 1

L(L̂
1) + p̂1∇L̂1, (2.184)

∇(p̂2R
1) = F̂ 1

R(R
1) + p2∇̂R1, (2.185)

∇̂(p3L
8
) = F 8

L(L
8
) + p̂3∇L

8
, (2.186)

∇(p̂4R̃
8) = F̂ 8

R(R
8) + p4∇̂R̃8. (2.187)

In any physical theory of fields, the link between potential terms and field
terms cannot be arbitrary. For instance, the gravitational potential of the
sun is not postulated but calculated from the equations of the gravitational
field. The main novelty of the previous relations is that the gauge
fields are different with left waves and with right waves. And we
must recall that a photon is always a purely left or purely right wave. Since:

□L̂1 = −i[F 1
L(L̂

1) + p̂1∇L̂1] = −iF 1
L(L̂

1)− ip̂1(−ip1L̂1), (2.188)

and with:

p2n = pn · pn = pnp̂n = p̂npn, (2.189)

The second-order wave equations read:

0 = (□+ p21 + iF 1
L)(L̂

1), (2.190)

0 = (□+ p22 + iF̂ 1
R)(R

1), (2.191)

0 = (□+ p23 + iF 8
L)(L

8
), (2.192)

0 = (□+ p24 + iF̂ 8
R)(R̃

8). (2.193)

We then have:

F 1
L(L̂

1) = i(□+ p21)(L̂
1), (2.194)

F̂ 1
R(R

1) = i(□+ p22)(R
1), (2.195)

F 8
L(L

8
) = i(□+ p23)(L

8
), (2.196)

F̂ 8
R(R̃

8) = i(□+ p24)(R̃
8). (2.197)
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2.3.6 Weinberg–Salam angle
This parameter of the Standard Model is an angle which measures the

mixing between the photon and the other gauge bosons of the U(1)×SU(2)
group. This θW angle satisfies:

g1 =
q

cos(θW )
; g2 =

q

sin(θW )
; q =

e

ℏc
(2.198)

−g1B + g2W
3 =

√
g21 + g22Z

0 =
2q

sin(2θW )
Z0 (2.199)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A + cos(θW )Z0 (2.200)

B + iW 3 = eiθW (A + iZ0) ; A + iZ0 = e−iθW (B + iW 3). (2.201)

With the equations (2.139) and (2.140), grouping together the three terms
W j , we replace 3W 3 by W , and in the place of the previous equations we
then let:

g1 =
q

cos(θW )
; g2 =

q

sin(θW )
; q =

e

ℏc
(2.202)

A = cos(θW )B + sin(θW )W ; Z0 = − sin(θW )B + cos(θW )W, (2.203)

B = cos(θW )A− sin(θW )Z0 ; W = sin(θW )A + cos(θW )Z0 (2.204)

B + iW = eiθW (A + iZ0) ; A + iZ0 = e−iθW (B + iW ). (2.205)

The system of wave equations of the electron is now expressed as:

0 = (∇+ i
g1
2
B + i

g2
2
W + ilv)L̂1

0 = (∇− ig1B − irv)R̂1. (2.206)

And with the previous definitions this is equivalent to

0 = [∇− i(qA+ rv) + iqTZ0]R̂1; T = tan(θW ),

0 = [∇+ i(qA+ lv) + i
q

2
(−T +

1

T
)Z0]L̂1. (2.207)

Since there is only one way to express the X and Y terms as sum and
difference: X = 1/2(X+Y )+1/2(X−Y ) and Y = 1/2(X+Y )−1/2(X−Y ),
we recast this system in the form:

0 =
[
∇− i[qA+ rv]− i

q

4
(
1

T
− 3T )Z0 + i

q

4
(
1

T
+ T )Z0

]
R̂1,

0 =
[
∇+ i[qA+ lv] + i

q

4
(
1

T
− 3T )Z0] + i

q

4
(
1

T
+ T )Z0

]
L̂1. (2.208)

We obtain the wave equation of the electron (1.147) only if the Z0 terms
have only one sign, positive, thus only if 3T − 1/T is cancelled. And this is
just the case if θW = 30◦, which we obtained in [32] via another reasoning,
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independent of the previous one. Moreover this result was also obtained
by Stoica in a completely different manner [103], which supports this result
and gives

T =
1√
3
;

1

T
=

√
3 = 3T ; 3T − 1

T
= 0;

q

4

(
T +

1

T

)
=

q√
3
. (2.209)

We then have:

0 =
[
∇− i(qA+ rv) + i

q√
3
Z0
]
R̂1,

0 =
[
∇+ i(qA+ lv) + i

q√
3
Z0
]
L̂1. (2.210)

The rotation of 30◦ that the Weinberg–Salam angle makes, is thus shown to
be the simple rewriting of the gauge terms as sum and difference of terms
that apply to the left spinor and the right spinor of the electron. Moreover
it turns out that the calculation of this angle from the experimental data
through the approximation method of quantum field theory gives a value
near 30◦ and which gets closer for the data with low energy–momentum.

2.3.7 Consequence for the neutrino–monopole
The Weinberg–Salam angle links several properties: the Z0 boson has

a proper mass greater than that of Wn bosons. The experimental ratio of
masses is in the vicinity of the 2/

√
3 ratio resulting from the 30◦ value of

the Weinberg–Salam angle. Other properties are the null electric charge of
the neutrino and the null proper mass of the photon. The equations of the
left and right waves of the neutrino–monopole are now:

0 = (−i∇+ b− 3w3 +mlv)L
8
, (2.211)

0 = (i∇+ 2pb +mrv)R
8
. (2.212)

With the 30◦ value of the angle, this becomes:

0 =
[
− i∇+

q

2
(A− Z ′0)− q

2
(A+ Z ′0) +mlv

]
L
8
, (2.213)

0 = [i∇+ pq(A− Z ′0) +mrv]R
8
; Z ′0 :=

Z0

√
3
. (2.214)

The potential A cancels out in the wave equation of L
8
, and this is the reason

for the neutrino being neutral, which means without electric interaction. We
recall that this system is equivalent to the single equation summing the two
equations of the system, because L

8
and R

8
are two independent columns

of ϕ
8
:

0 = ∇ϕ8(−iσ3)− 2qZ ′0L
8
+ pqAR

8 − pqZ ′0R
8
+mlvL

8
+mrvR

8
(2.215)
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If p = −2, a value that we will also explain in Chapter 4, we can put together
the two terms containing the Z0 boson:

0 = ∇ϕ8σ21 + qAϕ
8
(1− σ3)− 2qZ ′0ϕ

8
σ3 + vϕ

8
(
ml 0
0 mr

)
, (2.216)

0 = ∇ϕ8σ21 + qAϕ
8
(1− σ3)− 2qZ ′0ϕ

8
σ3 + vϕ

8
m8; m8 :=

(
ml 0
0 mr

)
.

2.4 Energy–momentum tensor

The Dirac equation uses a unique Lagrangian density but in fact several
different Lagrangian densities are possible, all stationary because identically
null. In (2.153) we let

0 = L =
m

kl
L1 +

m

kr
L2 +

m

kml
L3 +

m

kmr
L4.

We encountered in Chapter 1 the other density that may be formed from
the single electron wave. These two densities are generalized as:

0 = L+ =
m

kl
L1 +

m

kr
L2 +

m

kml
L3 +

m

kmr
L4 = L, (2.217)

0 = L− =
m

kl
L1 − m

kr
L2 +

m

kml
L3 − m

kmr
L4.

The existence of several other Lagrangian densities is obtained by assigning
the two minus signs differently. Each of these Lagrangian densities (2.153)
is invariant under Cl∗3 and also invariant under translation. To each of these
invariances is associated a conservative current (Noether’s theorem). The
energy–momentum tensor is the tensor associated with invariance under
translation. Tetrode’s tensor T is the tensor associated with L+. The
tensor associated with L− generalizes the non-interpreted tensor V of Costa
de Beauregard 10 [51]. They satisfy

Tµ
λ = ℜ

[(m
kl
η1†σµd1Lλη

1 +
m

kr
ξ1†σ̂µd1Rλξ

1

+
m

kml
η8†σµd8Lλη

8 +
m

kmr
ξ8†σ̂µd8Rλξ

8
)]
, (2.218)

10. In this note Costa de Beauregard pointed out that the Vij tensor is non-interpreted,
which means it is without equivalent in classical physics. We may see that this tensor
is obtained [22] by replacing γ0 with γ3 in the definition of Tetrode’s tensor. This
replacement also changes the J current into the K current and is equivalent to the passing
from L+ into L−. This induces the astonishing idea that two energy–momentum tensors
exist in the wave of the electron. The existence of two Lagrangian densities and of two
energy–momentum tensors was first encountered in de Broglie’s theory of the photon
[55][56].
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V µ
λ = ℜ

[
−
(m
kl
η1†σµd1Lλη

1 − m

kr
ξ1†σ̂µd1Rλξ

1

+
m

kml
η8†σµd8Lλη

8 − m

kmr
ξ8†σ̂µd8Rλξ

8
)]
. (2.219)

where the operators dλ are defined as:

d1Lλη
1 = (−i∂λ + l1λ)η

1, (2.220)

d1Rλξ
1 = (−i∂λ + r1λ)ξ

1, (2.221)

d8Lλη
8 = (−i∂λ + l8λ)η

8, (2.222)

d8Rλξ
8 = (−i∂λ + r8λ)ξ

8. (2.223)

The energy–momentum tensor T is thus the sum of four tensors, one for
each spinor of the leptonic wave:

T =
m

kl
T 1
L +

m

kr
T 1
R +

m

kml
T 8
R +

m

kmr
T 8
L, (2.224)

T 1
L
µ

λ = ℜ(η1†σµd1Lλη
1). (2.225)

We obtain the three other parts simply by replacing η1 with ξ1, η8 and ξ8,
and by the replacement of the σµ with σ̂µ whenever we replace η by ξ. It
is thus enough to study T 1

L and then to apply this procedure to the others.
What we carry out here is the generalization of the study in Chapter 1.
And so we may then again use the same method of calculation which, with
(1.285), gives:

∂µT
1
L
µ
= ∂µT

1
L
µ

λσ
λ = ℜ

[
∂µ[η

1†σµ(−i∂λ + l1λ)η
1]
]
σλ

= ℜ
[
∂µ[−iη1†σµ∂λη

1 + l1λD
1µ
L ]
]
σλ. (2.226)

Next we use the wave equation of η1, and this gives

∇η1 = −il1η1; ∂µD1µ
L = 0, (2.227)

∂µT
1
L
µ
= ℜ

[
[−i(∇η1)†∂λη1 − iη1†∂λ(∇η1)−D1µ

L ∂µl
1
λ]
]
σλ

= ℜ[−i(iη1†l1)∂λη1 − iη1†∂λ(−il1η1) + (∂µl
1
λ)D

1µ
L ]σλ

= (∂µl
1
λ − ∂λl

1
µ)D

1µ
L σλ. (2.228)

Similarly, with the right wave of the electron, we have:

∂µT
1
R
µ
= (∂µr

1
λ − ∂λr

1
µ)D

1µ
R σλ, (2.229)

∂µT
8
L
µ
= (∂µl

8
λ − ∂λl

8
µ)D

8µ
L σλ, (2.230)

∂µT
8
R
µ
= (∂µr

8
λ − ∂λr

8
µ)D

8µ
R σλ. (2.231)

The complete electromagnetic field F with magnetic monopoles is the sum
of a purely electric field that we denote as F e, and of a purely magnetic
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field that we denote as Fm. They satisfy the following:

∂µA
µ = 0; ∂µZ

0µ = 0, (2.232)

F = F e + Fm; F e = ∇Â = E⃗ + iH⃗; E⃗ = −∂0A⃗− ∂⃗A0; H⃗ = ∂⃗ × A⃗

Fm = ∇îZ0 = E⃗m + iH⃗m; E⃗m = ∂⃗ × Z⃗0; H⃗m = ∂0Z⃗
0 + ∂⃗Z0

0 . (2.233)

We thus have:

F e
µλ = ∂µAλ − ∂λAµ; iF

m
µλ = ∂µZ

′0
λ − ∂λZ

′0
µ , (2.234)

∂µT
µ =

m

kl
∂µT

1
L
µ
+
m

kr
∂µT

1
R
µ
+

m

kml
∂µT

8
L
µ
+

m

kmr
∂µT

8
R
µ
= ∂µT

µ
λ σ

λ,

∂µT
µ
λ =

m

kl
∂µT

1
L
µ

λ +
m

kr
∂µT

1
R
µ

λ +
m

kml
∂µT

8
L
µ

λ +
m

kmr
∂µT

8
R
µ

λ. (2.235)

And we have:

l1 = b + 3w3 + lv =
q

2
(A− Z ′0) +

q

2
(A+ Z ′0) + lv

= q(A+ Z ′0) + lv, (2.236)

r1 = 2b + rv = q(A− Z ′0) + rv, (2.237)

l8 = b− 3w3 +mlv =
q

2
(A− Z ′0)− q

2
(A+ 3Z ′0) +mlv

= −2qZ ′0 +mlv, (2.238)

r8 = 2pb +mrv = pq(A− Z ′0) +mrv. (2.239)

With the left wave of the electron we obtain:

∂µT
1µ
Lλ = (∂µl

1
λ − ∂λl

1
µ)D

1µ
L

= [q(∂µAλ − ∂λAµ) + q(∂µZ
′0
λ − ∂λZ

′0
µ) + l(∂µvλ − ∂λvµ)

]
D1µ

L

= (qF e
µλ + iqFm

µλ + lGµλ)D
1µ
L (2.240)

Gµλ := ∂µvλ − ∂λvµ, (2.241)

where G is a bivector similar to the electromagnetic field. With the right
wave of the electron we obtain:

∂µT
1µ
Rλ = (∂µr

1
λ − ∂λr

1
µ)D

1µ
R

= [q(∂µAλ − ∂λAµ)− (∂µZ
′0
λ − ∂λZ

′0
µ) + r(∂µvλ − ∂λvµ)]D

1µ
R

= (qF e
µλ − iqFm

µλ + rGµλ)D
1µ
R . (2.242)

With the left wave of the neutrino–monopole we obtain:

∂µT
8µ
Lλ = (∂µl

8
λ − ∂λl

8
µ)D

8µ
L

= [0(∂µAλ − ∂λAµ)− 2q(∂µZ
′0
λ − ∂λZ

′0
µ) +ml(∂µvλ − ∂λvµ)]D

8µ
L

= (0F e
µλ − 2iqFm

µλ +mlGµλ

)
D1µ

L . (2.243)
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With the right wave of the neutrino–monopole we obtain:

∂µT
8µ
Rλ = (∂µr

8
λ − ∂λr

8
µ)D

8µ
R

= [pq(∂µAλ − ∂λAµ)− pq(∂µZ
′0
λ − ∂λZ

′0
µ) +mr(∂µvλ − ∂λvµ)]D

8µ
R

= (pqF e
µλ − ipqFm

µλ +mrGµλ

)
D1µ

R . (2.244)

Adding, we get:

∂µT
µ
λ =

q

k
F e
µλ

(m
l
D1µ

L +
m

r
D1µ

R +
mp

mr
D8µ

R

)
+ i

q

k
Fm
µλ

(m
l
D1µ

L − m

r
D1µ

R − 2
m

ml
D8µ

L − p
m

mr
D8µ

R

)
(2.245)

+
m

k
Gµλ(D

1µ
L +D1µ

R +D8µ
L +D8µ

R ).

This gives:

∂µT
µ =

[
qF e

µλ

(
Jµ +

mp

kmr
D8µ

R

)
(2.246)

+ iqFm
µλ

(m
kl
D1µ

L − m

kr
D1µ

R − 2
m

kml
D8µ

L − p
m

kmr
D8µ

R

)
+
m

k
GµλJ

µ
l

)]
σλ.

We see that the D8µ
L term is missing in the first line: this results from the

neutrality of the left wave of the neutrino which does not see the electric
interaction (hence the name "neutrino"). When the electron is alone, when
weak interactions are not at play, nor the G field, it remains:

∂µT
µ = qF e

µλ

(m
kl
D1µ

L +
m

kr
D1µ

R

)
σλ, (2.247)

This gives the Lorentz force (1.305) acting on the electric current je =
e(mklD

1
R + m

krD
1
L) of the electron.

2.4.1 Probability density
The component T 0

0 of the energy–momentum tensor satisfies:

T 0
0 = ℜ

[
− i
(m
kl
η1†d1L0η

1 +
m

kr
ξ1†d1R0ξ

1

+
m

kml
η8†d8L0η

8 +
m

kmr
ξ8†d8R0ξ

8
)]
. (2.248)

For a solution to the wave equation with an energy E that is the same for
the whole wave, we have:

−id1R0ξ
1 =

E

ℏc
ξ1(⃗x); −id8R0ξ

8 =
E

ℏc
ξ8(⃗x),

−id1L0η
1 =

E

ℏc
η1(⃗x); −id8L0η

8 =
E

ℏc
η8(⃗x). (2.249)
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We then have:

T 0
0 =

E

ℏc

(m
kl
η1†η1 +

m

kr
ξ1†ξ1 +

m

kml
η8†η8 +

m

kmr
ξ8†ξ8

)
=
E

ℏc

(m
kl
D10

L +
m

kr
D10

R +
m

kml
D80

L +
m

kmr
D80

R

)
=
E

ℏc
J0l , (2.250)

It is the Jl current which is a generalization of the J current in Chapter 1.
The reason of the existence of a probability current in physics is the same:
the equivalence between inertial mass and gravitational mass which implies:

E =

∫∫∫
dvT 0

0 ;

∫∫∫
dv

J0l
ℏc

= 1. (2.251)

2.5 Quantization of the kinetic momentum

Noether’s theorem derives the conservation of energy–momentum from
the invariance of the Lagrangian density under translation. In the same
way this same theorem derives the conservation of the kinetic momen-
tum from the invariance of the Lagrangian density under space-time ro-
tations. Relativistic mechanics replaced the group of spatial rotations with
the Lorentz group, but quantum theory also replaced this group with the
SL(2,C) group. And we extended this invariance using the greater group
GL(2,C) = Cl∗3. We thus start from the real Lagrangian density L− and
from the energy–momentum corresponding to this Lagrangian:

V µ
λ = ℜ

[
− i
(m
kl
η1†σµd1Lλη

1 − m

kr
ξ1†σ̂µd1Rλξ

1

+
m

kml
η8†σµd8Lλη

8 − m

kmr
ξ8†σ̂µd8Rλξ

8
)]
. (2.252)

We note two possible methods for the demonstration of Noether’s theorem.
However that of Lasenby [83] in the Clifford algebra does not specify in detail
what comes with a wave with spin 1/2. Thus we will take the method usual
in quantum field theory and we will follow Bailin [2]. We consider a general
transformation of the form:

M = 1+
1

2
(δω0+δω1σ1+δω

2σ2+δω
3σ3+δω

4iσ1+δω
5iσ2+δω

6iσ3+δω
7i)

(2.253)
where the eight δωn are infinitely small. We have

M† = 1 +
1

2
(δω0 + δω1σ1 + δω2σ2 + δω3σ3 − δω4iσ1

− δω5iσ2 − δω6iσ3 − δω7i)

x′ = x′µσµ =MxM† = x + δxµσµ; δx
µ = Xµ

i δω
i (2.254)
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This gives

δx0 = x0δω0 + x1δω1 + x2δω2 + x3δω3,

δx1 = x0δω1 + x1δω0 + x2δω6 − x3δω5, (2.255)

δx2 = x0δω2 − x1δω6 + x2δω0 + x3δω4,

δx3 = x0δω3 + x1δω5 − x2δω4 + x3δω0.

The only non-null Xµ
i are then

X0
0 = x0; X0

1 = x1; X0
2 = x2; X0

3 = x3,

X1
0 = x1; X1

1 = x0; X1
5 = −x3; X1

6 = x2, (2.256)

X2
0 = x2; X2

2 = x0; X2
6 = −x1; X2

4 = x3,

X3
0 = x3; X3

3 = x0; X3
4 = −x2; X3

5 = x1,

Bailin denotes the different fields φa, and their variations are denoted as

δφa = ϕai δω
i. (2.257)

Since we may use the adjoint to obtain the real part, we can opt to consider
only four spinor fields:

φ1 = η1; φ2 = ξ1; φ3 = η8; φ4 = ξ8. (2.258)

And we have

η1 + δη1 = M̂η1; ξ1 + δξ1 =Mξ1; η8 + δη8 = M̂η8; ξ8 + δξ8 =Mξ8,

M̂ = 1 +
1

2
(δω0 − δω1σ1 − δω2σ2 − δω3σ3

+ δω4iσ1 + δω5iσ2 + δω6iσ3 − δω7i). (2.259)

This gives

2δξ1 = δω0ξ1 + δω1σ1ξ
1 + δω2σ2ξ

1 + δω3σ3ξ
1 (2.260)

+ δω4iσ1ξ
1 + δω5iσ2ξ

1 + δω6iσ3ξ
1 + δω7iξ1,

2δη1 = δω0η1 − δω1σ1η
1 − δω2σ2η

1 − δω3σ3η
1 (2.261)

+ δω4iσ1η
1 + δω5iσ2η

1 + δω6iσ3η
1 − δω7iη1.
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And we obtain two similar formulas for ξ8 and η8. With the numbering in
(2.258) we get:

ϕ10 =
η1

2
; ϕ11 = −σ1

η1

2
; ϕ12 = −σ2

η1

2
; ϕ13 = −σ3

η1

2
,

ϕ14 = iσ1
η1

2
; ϕ15 = iσ2

η1

2
; ϕ16 = iσ3

η1

2
; ϕ17 = −iη

1

2
, (2.262)

ϕ20 =
ξ1

2
; ϕ21 = σ1

ξ1

2
; ϕ22 = σ2

ξ1

2
; ϕ23 = σ3

ξ1

2
,

ϕ24 = iσ1
ξ1

2
; ϕ25 = iσ2

ξ1

2
; ϕ26 = iσ3

ξ1

2
; ϕ27 = i

ξ1

2
, (2.263)

ϕ30 =
η8

2
; ϕ31 = −σ1

η8

2
; ϕ32 = −σ2

η8

2
; ϕ33 = −σ3

η8

2
,

ϕ34 = iσ1
η8

2
; ϕ35 = iσ2

η8

2
; ϕ36 = iσ3

η8

2
; ϕ37 = −iη

8

2
, (2.264)

ϕ40 =
ξ8

2
; ϕ41 = σ1

ξ8

2
; ϕ42 = σ2

ξ8

2
; ϕ43 = σ3

ξ8

2
,

ϕ44 = iσ1
ξ8

2
; ϕ45 = iσ2

ξ8

2
; ϕ46 = iσ3

ξ8

2
; ϕ47 = +i

ξ8

2
. (2.265)

Since the ξ′n and η′n are also solutions of the wave equations, the Lagrangian
density always satisfies 0 = L′−; thus Noether’s theorem associates to each
of the eight parameters ωi a conservative current:

jµi =
( ∂L−

∂(∂µφa)
(∂νφa)− L−δµν

)
Xν

i − ∂L−

∂(∂µφa)
ϕai . (2.266)

In comparison with this general formula we obtain a simplification because
our equations are homogeneous, and this is associated to a Lagrangian den-
sity that is exactly null. Thus the currents satisfy:

jµi =
( ∂L−

∂(∂µφa)
(∂νφa)

)
Xν

i − ∂L−

∂(∂µφa)
ϕai . (2.267)

With (2.149) to (2.152) the Lagrangian density (2.217) gives:

∂L−

∂(∂µφ1)
=

∂L−

∂(∂µη1)
= − im

2kl
η1†σµ;

∂L−

∂(∂µφ2)
=

∂L−

∂(∂µξ1)
= +

im

2kr
ξ1†σµ,

(2.268)
∂L−

∂(∂µφ3)
=

∂L−

∂(∂µη8)
= − im

2km1
η8†σµ;

∂L−

∂(∂µφ4)
=

∂L−

∂(∂µξ8)
= +

im

2km2
ξ8†σµ.

Before, quantum theory only used quantities jµ1 to jµ6 . These six space-time
vectors join two other vectors, and it is precisely one of these new vectors,
j7, that we will use now. We have

jµ7 =
( ∂L−

∂(∂µφa)
(∂νφa)

)
Xν

7 − ∂L−

∂(∂µφa)
ϕa7 . (2.269)
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The only Xν
i that are not null are listed in (2.256), and this list contains

no Xν
7 . This comes from the commutative property: the generator i of the

chiral gauge U(1) belongs to the kernel of the homomorphism f : M 7→ R
from Cl∗3 into the D∗ group of similitudes (see 1.1.2 and 1.2). We then have:

jµ7 = − ∂L−

∂(∂µφa)
ϕa7 . (2.270)

With equations (2.262) to (2.265) and (2.268), and since the adjoint of a
real is likewise real, we get

jµ7 = 2
im

2kl
η1†σµ(−i)η

1

2
− 2

im

2kr
ξ1†σµ(+i)

ξ1

2

+ 2
im

2kml
η8†σµ(−i)η

8

2
− 2

im

2kmr
ξ8†σµ(+i)

ξ8

2
, (2.271)

which means:

j7 =
1

2

(m
kl
D1

L +
m

kr
D1

R +
m

kml
D8

L +
m

kmr
D8

R

)
=

1

2
J0l . (2.272)

With (2.251), the proper kinetic momentum, usually called spin, satisfies :∫∫∫
dv

1

c
j07 =

1

2c

∫∫∫
dvJ0l =

ℏ
2
. (2.273)

We recall that this equality is obtained from the equivalence principle: the
total energy of the electron is equal to the sum over all space of the energy
density T 0

0 . We may then say that both quantization and general relativity
result from the same equivalence principle between inertial mass-energy and
gravitational mass-energy. This quantization of the spin from properties of
the wave equation was not obtained previously for two reasons: first, nobody
suspected the presence of a form invariance group more binding than the
Lorentz group 11 . Second reason, nobody except the wise O. Costa de
Beauregard [51], saw the existence of the strange V tensor in the wave of
the electron.

This quantization of spin concerns the complete lepton, with the two
parts that are the electron and the neutrino–monopole. It is the temporal
component of a space-time vector which is quantized, and this temporal
component is obtained by summing a tensorial quantity over the whole
space. This is both very close to what we know from the experi-
mental point of view, with the true value ℏ/2, and very far from
current quantum theory since this does not come from the proper
value of a Hermitian operator.

11. This could be seen as early as 1928 but was obscured by the use of infinitesimal
transformations which masked the non-equality between SL(2,C) and the Lorentz group.
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2.6 Dynamics of the neutrino–monopole
The magnetic monopole may be viewed from three different perspectives

because it may be dotted of a right wave, or a left wave or both. The
magnetic monopole without a right wave is called a neutrino in today’s
physics. The jm = gD8

R is thus null, and afterwards the km current is
reduced to the left current. The force acting on the neutrino is:

∂µT
µ = Fm

µλik
µ
mσ

λ; km = −2q

k
D8

L, (2.274)

∂µT
µ = f0 + f⃗;

i

2
Fm
µλk

µ
mσ

λ = k⃗m · H⃗m + k0mH⃗
m − k⃗m × E⃗m, (2.275)

ℏc
2
f⃗ = k0mH⃗

m − k⃗m × E⃗m; Fm = E⃗m + iH⃗m. (2.276)

A second possibility which was not yet employed by the Standard Model
is that the neutrino–monopole might only have a right wave. In this case
it interacts both with particles with electric charge and with particles with
magnetic charge, and (2.246) is reduced to

ℏc∂µTµ = F e
µλj

µ
mσ

λ +Fm
µλik

µ
mσ

λ; km = − pm

kmr
D8

R; jm =
pm

kmr
D8

R. (2.277)

where g is the magnetic charge. We remark that the two currents linked to
this right wave are opposite. We must thus expect to get a different result
for the force acting on this wave depending on whether an electric charge
or a magnetic charge is at play.

The interaction between an electric charge and a magnetic charge (mag-
netic monopole) was previously described in a complicated way by writing
the electromagnetic field of the monopole as if it were of an electric origin:
F = ∇Ŵ instead F = ∇îW . Similarly the interaction between a magnetic
charge and an electric charge was described by Lochak [84, 85] using the
electromagnetic field created by the electron as if it were of a magnetic ori-
gin: F = ∇îA instead F = ∇Â. But these calculations are correct because
we indeed have:

F e
µλj

µ
m = ∇Âjµm = ∇îAigDµ

R. (2.278)

We may then refer to these works [84, 85] for the demonstration of Dirac’s
formula eg/ℏc = 1/2. Since we just explained how the quantization of the
kinetic momentum follows from the equivalence principle, since the quanti-
zation of the electric charge and of the magnetic charge follows from Dirac’s
formula, we see how the quantization of charges also follows from the equiv-
alence principle and from the extended invariance.



Chapter 3

Electroweak and strong
interactions

We study the subspace of the Cl3,3 algebra corresponding to
the quark part of the fermionic wave (first generation). In the
framework of this algebra we study weak interactions of d and
u quarks. We present in the same framework the SU(3) group
of chromodynamics. We generalize the mass term of the leptonic
wave and we obtain the wave equations of quarks with mass term.
These wave equations are form-invariant and gauge-invariant pre-
cisely under the gauge group of the Standard Model. The wave
equations come from Lagrangian equations, solely derived from
algebraic properties of the geometric algebra. The dynamics of
the quark wave gives the forces acting on the charged and colored
fluid. This implies the quantization of the kinetic momentum of
the proton and the neutron as well as the confinement of the
quarks. The inclusion of Cl∗3 into End(Cl3) fixes the orientation of
space. We explain the preference for the left waves.

3.1 The quark sector
We now study the Ψq part of the fermionic wave (2.2)

Ψq := Ψ−
(
Ψl 0
0 Ψl

)
=

(
iΨb Ψr +Ψg

Ψr −Ψg −iΨb

)
, (3.1)

Ψr = Ψ2 :=

(
−iϕdr ϕ†ur
ϕur −iϕ̂dr

)
=

(
ϕ2 ϕ5†

ϕ
5 −ϕ̂2

)
, (3.2)

Ψg = Ψ3 :=

(
−iϕdg ϕ†ug
ϕug −iϕ̂dg

)
=

(
ϕ3 ϕ6†

ϕ
6 −ϕ̂3

)
, (3.3)

127
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Ψb = Ψ4 :=

(
−iϕdb ϕ†ub
ϕub −iϕ̂db

)
=

(
ϕ4 ϕ7†

ϕ
7 −ϕ̂4

)
. (3.4)

So we replace the index of color r, g, b by an upper numeric index:

Ψq =

(
iΨ4 Ψ2 +Ψ3

Ψ2 −Ψ3 −iΨ4

)
; Ψn =

(
ϕn ϕ̃3+n

ϕ
3+n −ϕ̂n

)
. (3.5)

We use the identity in Cl3 between the adjoint ϕ† and the reverse ϕ̃. Next
the P : ϕ 7→ ϕ̂ transformation is the main automorphism in Cl3 (parity).
We may identify Ψn with its first row:

Ψn =

(
ϕn ϕ̃3+n

ϕ
3+n −ϕ̂n

)
=
(
ϕn ϕ̃3+n

)
, (3.6)

easing calculations with Cl3 × Cl3. The two supplementary dimensions of
time that should allow us to pass from Cl1,3 to Cl3,3 do not have physical
reality. This Cl3,3 is interesting only because Cl3,3 = End(Cl3). The six Rn

and the six Ln are the only mathematical objects that are really important
in this chapter:

Rn = ϕn
1 + σ3

2
; Ln = ϕn

1− σ3
2

; n = 2, 3, 4, (3.7)

R̃3+n = ϕ̃3+n 1 + σ3
2

; L̃3+n = ϕ̃3+n 1− σ3
2

. (3.8)

As previously, electroweak interactions (and further strong interactions) are
obtained by replacing partial derivatives with gauge-invariant derivatives.
We always use the notation of B.2. We indicate in which algebra we are
calculating as follows: The same vectors of space-time are underlined when
we express them in Cl3,3. They are in bold when we express them in Cl1,3
and will be in ordinary or in Roman when we express them in Cl3. In this
chapter we will use the index 0 for the time component of space-time vectors,
indices 4 and 5 being those of the two fictitious supplementary dimensions.
We let:

W j = ΓµW j
µ, j = 1, 2, 3 ; D = ΓµDµ ; Γ0 = Γ0 ; Γj = −Γj ; i = Γ0123,

Γµ =

(
0 γµ

γµ 0

)
; Wj =W j

µγ
µ =

(
0 W j

Ŵ j 0

)
; W j =W j

µσ
µ, (3.9)

D =

(
0 D
D 0

)
; D = Dµγ

µ =

(
0 D

D̂ 0

)
; D = Dµσ

µ.
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The derivation for the electroweak gauge now reads as:

D(Ψ) = ∂(Ψ) +
g1
2
B P 0(Ψ) +

g2
2
W jP j(Ψ),

∂ = Γµ∂µ =

(
0 ∂∂∂
∂∂∂ 0

)
; ∂∂∂ = γµ∂µ =

(
0 ∇
∇̂ 0

)
; ∇ = σµ∂µ, (3.10)

B = ΓµBµ =

(
0 B
B 0

)
; B = Bµγ

µ =

(
0 B

B̂ 0

)
; B = Bµσ

µ.

We use two projectors P± satisfying

P±(Ψq) =
1

2
(Ψq ± iΨqΓ21); P±(Ψ

n) =
1

2
(Ψn ± iΨnγ21), (3.11)

P+(Ψ
n) = Ψn

L; P−(Ψ
n) = Ψn

R. (3.12)

And we define Pj(Ψ
n), j = 1, 2, 3, n = 1, 2, 3, 4 (we recall that Ψl = Ψ1):

P 1(Ψ) = Γ0123P+(Ψ)Γ35, (3.13)
P 2(Ψ) = Γ0123P+(Ψ)Γ5012, (3.14)
P 3(Ψ) = P+(Ψ)(−Γ0123), (3.15)

P j(Ψ) =
1

2

(
Pj(Ψl) + iPj(Ψ

4) Pj(Ψ
2) + Pj(Ψ

3)
Pj(Ψ

2)− Pj(Ψ
3) Pj(Ψl)− iPj(Ψ

4)

)
, j = 0, 1, 2, 3.

The three operators P j , j = 1, 2, 3 act on the quark sector as they do on
the lepton sector:

P1(Ψ
n) = iP+(Ψ

n)γ3γ5, (3.16)
P2(Ψ

n) = iP+(Ψ
n)(−iγ3), (3.17)

P3(Ψ
n) = P+(Ψ

n)(−i). (3.18)

On the contrary the fourth operator acts differently on the wave of leptons
and on the quark sector (we will explain this difference at the end of this
section). Here we again use the operator P0 defined in (2.44). The operators
acting on the waves of quarks have a similar yet nevertheless different form:

P0(Ψl) = Ψlγ21 + (1− p)P−(Ψl)i+ piP−(Ψl),

P0(Ψ
n) = −1

3
Ψnγ21 + P−(Ψ

n)i (3.19)

= −1

3
Ψnγ21 +

1

2
(Ψni− iΨnγ03), n = 2, 3, 4.

Even if p was null and thus there could not exist any magnetic monopole,
an important difference should subsist between (2.44) and (3.19), since the
coefficient of Ψlγ21 is 1 while the coefficient of each of the three Ψnγ21 is
−1/3. We remark that since the quarks have color in triplicates, the sum
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of the coefficient is 1+ 3(−1/3) = 0, which indeed is not at random 1. Next
for n = 1, 2, 3, 4 we let:

ϕn√
2
=

(
ξn1 −ηn2
ξn2 ηn1

)
;
Rn

√
2
=

(
ξn1 0
ξn2 0

)
; ξn =

(
ξn1
ξn2

)
; η̂n =

(
−ηn2
ηn1

)
, (3.20)

while for n = 5, 6, 7, 8:

ϕ̃n√
2
=

(
ξn1 −ηn2
ξn2 ηn1

)
;
R̃n

√
2
=

(
ξn1 0
ξn2 0

)
; ξn =

(
ξn1
ξn2

)
; η̂n =

(
−ηn2
ηn1

)
. (3.21)

We then get for n = 1, 2, 3, 4:

ϕ̂n√
2
=

(
ηn1 −ξn2
ηn2 ξ

n

1

)
;
L̂n

√
2
=

(
ηn1 0
ηn2 0

)
; ηn =

(
ηn1
ηn2

)
; ξ̂n =

(
−ξn2
ξ
n

1

)
, (3.22)

and for n = 5, 6, 7, 8:

ϕ
n

√
2
=

(
ηn1 −ξn2
ηn2 ξ

n

1

)
;
L
n

√
2
=

(
ηn1 0
ηn2 0

)
; ηn =

(
ηn1
ηn2

)
; ξ̂n =

(
−ξn2
ξ
n

1

)
. (3.23)

P+ is the projector on left waves and P− on right waves. For n = 2, 3, 4 we
have:

P−(Ψ
n) =

(
Rn R̃3+n

R
3+n −R̂n

)
;P+(Ψ

n) =

(
Ln L̃3+n

L
3+n −L̂n

)
, (3.24)

where we recall that the waves numbered 2, 3, 4 are the states of color r, g,
b of the d quark, while the waves numbered 5, 6, 7 are the states of color r,
g, b of the u quark. We have the same for the lepton part of the wave with
the upper indices 1 and 8 instead of n and 3+n. We then get for n = 2, 3, 4:

P0(Ψ
n) = −1

3
Ψnγ21 + P−(Ψ

n)i

=
i

3

(
2Rn + Ln −4R̃3+n + L̃3+n

4R
3+n − L

3+n
2R̂n + L̂n

)
, (3.25)

g1
2
BP0(Ψ

n) = bP0(Ψ
n) =

i

3

(
b(4R

3+n − L
3+n

) b(2R̂n + L̂n)
)
.

Since P1, P2 and P3 remain unchanged when we move on to the quark
sector, on the model of (2.57) and (2.59) we have:

P1(Ψ
n) = i

(
L̃3+n Ln

−L̂n L
3+n

)
; P2(Ψ

n) = i2

(
−L̃3+n Ln

L̂n L
3+n

)
. (3.26)

1. This cancellation is very useful in the Standard Model to suppress the “anomalies”
linked to the chiral behavior of weak interactions. This played an important role in the
discovery of quarks and their three color charges.
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For j = 3 we get:

P3(Ψ
n) = i

(
−Ln L̃3+n

−L3+n −L̂n

)
. (3.27)

We then get:

wjPj(Ψ
n) =

(
−i[(w1 − iw2)L̂n +w3L

3+n
] i[(w1 + iw2)L

3+n −w3L̂n]
)
.

(3.28)
Now (3.10) yields:

DΨn = ∂∂∂Ψn +
g1
2
BP0(Ψ

n) +
g2
2
WjPj(Ψ

n)

= ∂∂∂Ψn + bP0(Ψ
n) +wjPj(Ψ

n). (3.29)

This gives for the right waves

DR̂n = ∇R̂n − 2i

3
bR̂n; DR

3+n
= ∇R3+n

+
4i

3
bR

3+n
. (3.30)

And for the left waves we get:

DL̂n = ∇L̂n − i

3
bL̂n − i[(w1 + iw2)L

3+n − w3L̂n], (3.31)

DL
3+n

= ∇L3+n − i

3
bL

3+n − i[(w1 − iw2)L̂n +w3L
3+n

]. (3.32)

Since the operators P1, P2 and P3 act exactly in the same way in the sector
of leptons and in the sector of quarks, the gauge invariance that we studied
in 2.3 works similarly. This allows us to obtain the gauge field’s values. And
instead of (2.116) and (2.137) we have:

Dn, 3+n
L − idn, 3+n

L = 2LnL3+n; Dn
L = LnL̃n; D3+n

L = L̃3+nL3+n,

W 1
n = Dn, 3+n

L ; W 2
n = dn, 3+n

L ; W 3
n = D3+n

L −Dn
L. (3.33)

We add an index n to the W j : even if they have the same properties, the W j
n

change with the color or when we pass from leptons to quarks. The gauge
invariance is similar to that of the lepton wave. The result, as with the
lepton part, is a simplification of the covariant derivatives which become:

DR̂n = ∇R̂n − 2i

3
bR̂n,

DL̂n = ∇L̂n − i

3
bL̂n + 3iw3

3L̂
n; wj

n =
g2
2
W j

n, (3.34)

DR
3+n

= ∇R3+n
+

4i

3
bR

3+n
,

DL
3+n

= ∇L3+n − i

3
bL

3+n − 3iw3
nL

3+n
. (3.35)
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By using a Weinberg–Salam angle of 30◦ in the lepton case we have:

b =
q

2
A− q

2
√
3
Z0
n; 3w3

n =
q

2
A +

q
√
3

2
Z0
n. (3.36)

We thus have for the d quark:

DR̂n = (∇− i
q

3
A + i

q

3
√
3
Z0
n)R̂

n,

DL̂n = (∇+ i
q

3
A + i

5q

3
√
3
Z0
n)L̂

n, (3.37)

Dϕ̂n = ∇ϕ̂n +
q

3
Aϕ̂nσ12 + i

q

3
√
3
Z0
n(R̂

n + 5L̂n).

This matches well what we expect: The electric charge of the d quark is
exactly a third of the charge of the electron (negative). For the u quark we
have:

DR̂3+n = (∇+ i
2q

3
A− i

2q

3
√
3
Z0
n)R̂

3+n

DL̂3+n = (∇− i
2q

3
A− i

4q

3
√
3
Z0
n)L̂

3+n, (3.38)

Dϕ̂3+n = ∇ϕ̂3+n − 2q

3
Aϕ̂3+nσ12 − i

q

3
√
3
Z0
n(2R̂

3+n + 4L̂3+n).

Here we also obtain the expected result since the charge of the u quark
is positive and equal to −2 times the charge of the d quark. What we
obtained in the first chapter for the charge conjugation is indeed conserved:
the antiquark of d seems to have a charge equal to half of that of the u
quark, and the antiquark of u seems to have a charge double that of the d
quark. We also recall that the charge conjugation is not only an apparent
change of sign of the electric charges: the right and left waves are exchanged.
Here we have an important result which reduces the number of
free parameters in the Standard Model: the simple replacement of
the coefficient 1 of Ψγ21 by −1/3 in P 0 is enough to obtain the two values
of the electric charge of the two kinds of quarks. Thus we have only one
free parameter instead two.

3.2 Chromodynamics

The Standard Model considers strong interactions as resulting also from
a gauge invariance under a SU(3) color group, from whence comes the word
“chromodynamics.” We transpose this group to Clifford algebra in a manner
similar to that used for weak interactions. We now define Γk in a manner
similar to P j of the previous section. We know the iλk generators of the
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SU(3) group of chromodynamics:

iλ1 =

0 i 0
i 0 0
0 0 0

 , iλ2 =

 0 1 0
−1 0 0
0 0 0

 , iλ3 =

i 0 0
0 −i 0
0 0 0

 ,

iλ4 =

0 0 i
0 0 0
i 0 0

 , iλ5 =

 0 0 1
0 0 0
−1 0 0

 , iλ6 =

0 0 0
0 0 i
0 i 0

 , (3.39)

iλ7 =

0 0 0
0 0 1
0 −1 0

 , iλ8 =
i√
3

1 0 0
0 1 0
0 0 −2

 .

Simplifying the notations, we use l, r, g, b instead of Ψl, Ψr = Ψ2, Ψg = Ψ3,
Ψb = Ψ4. So we have

Ψ =

(
l + ib r + g
r − g l − ib

)
. (3.40)

The unique i of nonrelativistic quantum mechanics must not be confused
with the i of the above relation, which is responsible for the orientation of
Cl3. Thus in Cl3 × Cl3 we must instead use i = γ0123, which does not
commute. Therefore (3.39) gives:

iλ1

rg
b

 =

ig
ir
0

 , iλ2

rg
b

 =

 g
−r
0

 , iλ3

rg
b

 =

 ir
−ig
0

 ,

iλ4

rg
b

 =

ib
0
ir

 , iλ5

rg
b

 =

 b
0
−r

 , iλ6

rg
b

 =

 0
ib
ig

 , (3.41)

iλ7

rg
b

 =

 0
b
−g

 , iλ8

rg
b

 =
1√
3

 ir
ig

−2ib

 .

The Λk corresponding to the iλk acting on Ψ are:

Λ1(Ψ) = −1

2
(Γ45Ψ+ Γ0123ΨS); S = Γ012345, (3.42)

Λ2(Ψ) = −1

2
(Γ4ΨΓ01235 + Γ01235ΨΓ4), (3.43)

Λ3(Ψ) =
1

2
(Γ5ΨΓ01235 − Γ01234ΨΓ4), (3.44)

Λ4(Ψ) =
1

2
(Γ0123ΨΓ4 − Γ01234Ψ), (3.45)
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Λ5(Ψ) = −1

2
(SΨΓ01235 + Γ01235ΨS) (3.46)

Λ6(Ψ) =
1

2
(Γ01234ΨS − Γ45ΨΓ4), (3.47)

Λ7(Ψ) =
1

2
(Γ01235Ψ−ΨΓ01235), (3.48)

Λ8(Ψ) = − 1

2
√
3
(2Γ45ΨS + Γ5ΨΓ01235 + Γ01234ΨΓ4). (3.49)

All Λk project the Ψ wave onto the quark sector Ψq. Thus the lepton part
of the wave does not see color forces.

We extend to strong interactions the gauge-invariant derivative of the
electroweak interactions (3.10) by letting:

D(Ψ) = ∂(Ψ) +
g1
2
B P 0(Ψ) +

g2
2
W jP j(Ψ) +

g3
2
GkΛk(Ψ), (3.50)

where g3 is another constant and the Gk are eight potential vectors called
gluons. Since I4 commutes with any element in Cl1,3 and since Pj(iΨind) =
iPj(Ψind) for j = 0, 1, 2, 3 and ind = l, r, g, b, we find that each operator iΓk

commutes with all operators P j . Now we use twelve reals: a0, aj , j = 1, 2, 3,
bk, k = 1, 2, ..., 8, and we let:

S0 = a0P 0; S1 =

j=3∑
j=1

ajP j ; S2 =

k=8∑
k=1

bkΛk; Σ = S0 + S1 + S2, (3.51)

and by using the exponential function we get:

exp(Σ) = exp(S0) exp(S1) exp(S2) = exp(S1) exp(S0) exp(S2)

= exp(S0) exp(S2) exp(S1) = . . . (3.52)

in any order, thanks to the commutation of P 0 with P j , j = 1, 2, 3 as
well as the commutation of P j , j = 0, 1, 2, 3 with Λk, k = 1, . . . , 8. The
set of exp(S) operators is a U(1) × SU(2) × SU(3) Lie group. The only
difference from the Standard Model is: we do not need to postulate this
structure since it results from the calculation of commutators. The
invariance under Cl∗3 (and consequently the relativistic invariance) of this
gauge-invariant derivation is similar to that obtained in 2.2.3. The gauge
invariance [36][50][45] can be expressed as:

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = ΛµDµ ; D′ = ΛµD′
µ, (3.53)

D′
µΨ

′ = exp(a0P 0 + S1 + S2)DµΨ, (3.54)
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B′
µ = Bµ − 2

g1
∂µa

0, (3.55)

W ′j
µP j =

[
exp(S1)W

j
µP j −

2

g2
∂µ[exp(S1)]

]
exp(−S1), (3.56)

G′k
µΛk =

[
exp(S2)G

k
µΛk − 2

g3
∂µ[exp(S2)]

]
exp(−S2). (3.57)

The SU(3) group of chromodynamics generated by the Λk operators only
acts on the quark sector. By letting:

diag(Ψ) =
1

4
(Ψ + SΨS + Γ4ΨΓ4 − Γ01235ΨΓ01235) =

(
Ψl 0
0 Ψl

)
, (3.58)

we have:
diag

(
[exp(bkΛk)](Ψ)

)
= diag(Ψ). (3.59)

This comes from the fact that we begin with operators that do not at all act
on Ψl. For the contrary case to be possible it would be necessary to consider
some operators similar to Λk coupling the wave of Ψl with one of the three
Ψn waves. This cannot exist because these operators project the right waves
onto right waves and the left waves onto left waves, and because the right
waves and the left waves of the lepton part, in weak interactions, transform
differently compared to the waves of the colored part of the whole wave.
We then get a U(1)×SU(2)×SU(3) gauge group for a wave incorporating
all the fermions of the first generation 2. This is certainly well established
experimentally. The novelty here is simply that this emerges directly from
the structure of the quantum wave. Since it is independent of the scale of
energies we can understand why the grand unified theories (GUTs) had no
success: it is impossible to have a greater group. Thus it is impossible that
a quark may be transformed into a lepton. This implies the conservation of
a quantity that QFT calls the baryonic number. Moreover this conservation
was experimentally supported by neutrino observatories like Kamioka. We
may say that our transposition of the Standard Model into Clifford
algebra automatically satisfies this law of conservation. This is a
reinforcement of the Standard Model by concordance with experiment.

3.2.1 Three generations, four neutrinos
The purpose of physical theory is the understanding of experimental

facts. Nowadays we must both justify why there are only three kinds of
leptons and quarks, and also why there is a fourth neutrino, very different
from the three others. Experiments show the existence of only three kinds
of light leptons from studying the disintegration of Z0, and experiments also

2. Later we will see how this group acts on the lepton sector only via the U(1)×SU(2)
part. The physical interpretation is: the leptons are incapable of strong interactions.
They interact only via electromagnetic and weak interactions.
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suggest the possibility of the existence of a fourth neutrino. We justified the
existence of three kinds of leptons in the previous chapter. This is easily
generalized to the three generations of the Standard Model. The two other
generations are obtained by replacing the σ3 of the Dirac equation by σ1
or σ2 everywhere this direction is in use. Moreover, the passing from one
generation to the other must be seen as a circular permutation of the indices
1 7→ 2 7→ 3 7→ 1 or 1 7→ 3 7→ 2 7→ 1 for the other generation. For instance,
the σ3 used for the projector defining the right wave and the left wave must
be replaced by σ1 or σ2. And the σ1 that links the wave of the particle and
the antiparticle must be replaced by σ2 or σ3. These changes force us to
treat each generation separately, and this explains the separate treatment of
each generation in the Standard Model. Yet for a fourth generation a similar
case is not possible, because the Cl3 algebra is the algebra of ordinary 3-
dimensional space. There it is impossible to get a fourth set of operators
similar to the Pµ.

But the existence of a fourth neutrino [27] is possible because Cl3 con-
tains four independent terms with square −1. The wave equation of the
electron uses one of these four terms: iσ3 = σ12. Further, the equalities
iσ1 = σ23 and iσ2 = σ31 explain why two other kinds of leptons exist. We
can also build a form-invariant wave equation with the fourth generator
i = σ123:

ϕ(∇ϕ̂)σ123 +mρ = 0. (3.60)

Multiplying on the left side by ϕ
−1

we obtain using ρ = e−iβϕϕ the equiv-
alent equation:

∇ϕ̂i+me−iβϕ = 0 ; ∇ϕ̂ = ime−iβϕ. (3.61)

We may extend the gauge invariance to a local one:

0 = ∇ϕ̂i+ g1Bϕ̂+me−iβϕ. (3.62)

This is equivalent to

0 = i∇η + g1Bη +me−iβξ, (3.63)

0 = i∇ξ̂ + g1Bξ̂ +me−iβ η̂. (3.64)

Contrary to our improved wave equation for the electron which has the
Dirac equation as its linear approximation, this wave equation cannot come
from the linear quantum theory: no linear approximation exists because the
angle β is no longer small. This angle is now the phase of the wave. We
nevertheless may obtain the plane waves. We search for solutions satisfying

ϕ = e−iφϕ0 ; φ = mvµx
µ ; v = σµvµ, (3.65)

where v is a fixed reduced velocity and ϕ0 is also a fixed term. We get

∇ϕ̂ = σµ∂µ(e
iφϕ̂0) = imveiφϕ̂0. (3.66)
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And we have
ϕϕ = e−iφϕ0e

−iφϕ0 = e−2iφϕ0ϕ0. (3.67)

Then if we let
ϕ0ϕ0 = ρ0e

iβ0 , (3.68)

we end up with:

β = β0 − 2φ ; e−iβϕ = e−i(β0−2φ)e−iφϕ0 = e−i(β0−φ)ϕ0. (3.69)

Hence (3.66) is equivalent to

imveiφϕ̂0 = ime−i(β0−φ)ϕ0 (3.70)

vϕ̂0 = e−iβ0ϕ0; e
iβ0vϕ̂0 = ϕ0. (3.71)

By conjugating we get
e−iβ0 v̂ϕ0 = ϕ̂0. (3.72)

Therefore we have

ϕ0 = eiβ0vϕ̂0 = eiβ0v[e−iβ0 v̂ϕ0] = vv̂ϕ0. (3.73)

Then if ϕ0 ̸= 0 we get:
1 = vv̂, (3.74)

which gives v0 =
√
1 + v⃗2 or v0 = −

√
1 + v⃗2 and since (3.71) implies:

ϕ0 = veiβ0 ϕ̂0; D0 = ϕ0ϕ̃0 = veiβ0 ϕ̂0ϕ̃0 = veiβ0ρ0e
−iβ0 = vρ0,

D0
0 = v0ρ0; v

0 > 0; v0 =
√
1 + v⃗2. (3.75)

Therefore no plane waves can exist with a sign of energy opposite to the
sign of the mass. This wave equation may have a gauge term and may be
expressed in an invariant manner of the form:

0 = ϕ(∇ϕ̂)i+ ϕqBϕ̂+mρ. (3.76)

Using the reversion we get

0 = −i(ϕ∇)ϕ̂+ ϕqBϕ̂+mρ. (3.77)

Given (1.120) to (1.123) we have:

ϕ(∇ϕ̂) = 1

2
(∇ ·Dµ)σ

µ + iwµσ
µ, (3.78)

ϕBϕ̂ = (B ·Dµ)σ
µ. (3.79)

Adding and subtracting (3.76) and (3.77) we get:

0 = ∇ ·Dµ, µ = 0, 1, 2, 3, (3.80)
0 = −w0 +B ·D0 +mρ, (3.81)
0 = −wj +B ·Dj , j = 1, 2, 3. (3.82)
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The four equations (3.80) are the laws of conservation of the Dµ currents.
Hence the probability current density is conserved. Multiplying by ϕ

−1
on

the left side (3.76) is equivalent to (3.62). This is equivalent to the system:

0 = i∇η + qBη +mvη, (3.83)

0 = i∇ξ̂ + qBξ̂ +mvξ̂. (3.84)

Thus with v the wave equation (3.76) is:

0 = (∇ϕ̂)i+ qBϕ̂+mvϕ̂. (3.85)

Since i commutes with σ1, the multiplication by σ1 on the right side of this
equation changes nothing: the fourth neutrino-monopole is its own
antiparticle.

3.3 Preserving the mass term
Similar to the previous section, and the previous chapter, a generaliza-

tion of the mass term is possible for the improved equation. To see this we
begin with the simplification of the part of the gauge-invariant derivative of
chromodynamics: we consider equally the three SU(2) subgroups of SU(3)
by using the potentials:

b =
g1
2
B; wj =

g2
2
W j , j = 1, 2, 3. (3.86)

h11 =
g3
2
G1; h21 =

g3
2
G2; h31 − h33 =

g3
2

(
−G3 − G8

√
3

)
,

h12 =
g3
2
G6; h22 =

g3
2
G7; h32 − h31 =

g3
2

(
G3 − G8

√
3

)
,

h13 =
g3
2
G4; h23 = −g3

2
G5; h33 − h32 =

g3
2

(
2
G8

√
3

)
. (3.87)

These potentials introduce no supplementary dimension into the gauge
group because the sum of h31−h33, h32−h31 and h33−h32 is null. Next we note:

n = n mod 3; 3 = 3; 4 = 1; 5 = 2. (3.88)

For the gauge-invariant derivative some supplementary terms appear con-
taining the gauge potentials Gk or hpn :

g3
2
GkΛk(Ψ) =

(
S(Ψ2)− S(Ψ3) S(Ψ1)− iS(Ψ4)
S(Ψ1) + iS(Ψ4) S(Ψ2) + S(Ψ3)

)
, (3.89)

S(Ψ1) = 0, (3.90)

S(Ψ2) =
g3
2

[
(G1 −G2i)iΨ3 −G3iΨ2 + (G4 −G5i)iΨ4 − 1√

3
iG8Ψ2

]
= (h1

1 − h2
1i)iΨ

3 − h3
1iΨ

2 + (h1
3 + h2

3i)iΨ
4 + h3

3iΨ
2, (3.91)
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S(Ψ3) =
g3
2

[
(G1 +G2i)iΨ2 +G3iΨ3 + (G6 −G7i)iΨ4 − 1√

3
G8iΨ3

]
= (h1

2 − h2
2i)iΨ

4 − h3
2iΨ

3 + (h1
1 + h2

1i)iΨ
2 + h3

1iΨ
3, (3.92)

S(Ψ4) =
g3
2

[
(G4 +G5i)iΨ2 + (G6 +G7i)iΨ3 +

2√
3
G8iΨ4

]
= (h1

3 − h2
3i)iΨ

2 + h3
3iΨ

4 + (h1
2 + h2

2i)iΨ
3 + h3

2iΨ
4, (3.93)

The cancellation in (3.90) means that leptons do not experience strong
interactions. Next the use of the modulo 3 indices allows us to express the
general formula as:

S(Ψn) = (h1
n−1−h2

n−1i)iΨ
n+1−h3

n−1iΨ
n+(h1

n+1+h2
n+1i)iΨ

n+2+h3
n+1iΨ

n.

(3.94)
We have with (3.50):

D(Ψ) =

(
DΨ2 −DΨ3 DΨ1 − iDΨ4

DΨl + iDΨ4 DΨ2 +DΨ3

)
,

DΨl = ∂∂∂Ψl +
g1
2
BP0(Ψl) +

g2
2
WjPj(Ψl) = ∂∂∂Ψl + bP0(Ψl) +wjPj(Ψl),

DΨn = ∂∂∂Ψn +
g1
2
BP0(Ψ

n) +
g2
2
WjPj(Ψ

n) + S(Ψn) (3.95)

= ∂∂∂Ψn + bP0(Ψ
n) +wjPj(Ψ

n) + S(Ψn).

We also have with the notations in B.1.2:

(h1
n−1 − h2

n−1i)iΨ
n+1 = i

(
−(h1n−1 + ih2n−1)ϕ

3+n+1 −(h1n−1 + ih2n−1)ϕ̂
n+1
)
,

−h3
n−1iΨ

n = i
(
h3n−1ϕ

3+n
h3n−1ϕ̂

n
)
. (3.96)

We next have:

(h1
n+1 + h2

n+1i)iΨ
n+2 = i

(
−(h1n+1 − ih2n+1)ϕ

3+n+2 −(h1n+1 − ih2n+1)ϕ̂
n+2
)
,

h3
n+1iΨ

n = i
(
−h3n+1ϕ

3+n −h3n+1ϕ̂
n
)
. (3.97)

Then if we let
S(Ψn) =

(
S(ϕ

3+n
) S(ϕ̂n)

)
, (3.98)

we get:

S(ϕ
3+n

) = −i(h1n−1 + ih2n−1)ϕ
3+n+1

+ ih3n−1ϕ
3+n

− i(h1n+1 − ih2n+1)ϕ
3+n+2 − ih3n+1ϕ

3+n
, (3.99)

S(ϕ̂n) = −i(h1n−1 + ih2n−1)ϕ
3+n+1

+ ih3n−1ϕ̂
n

− i(h1n+1 − ih2n+1)ϕ̂
n+2 − ih3n+1ϕ̂

n. (3.100)
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For the part containing the derivative and the electroweak interactions we
use equations (3.30) to (3.32). And we use the conjugation M 7→ M̂ on the
right waves, which allows us to get for the gauge-invariant derivative:

−iD̂Rn = −i∇̂Rn +
2

3
b̂Rn + (ĥ1n−1 − iĥ2n−1)R

n+1 + (ĥ1n+1 + iĥ2n+1)R
n+2

− (ĥ3n−1 − ĥ3n+1)R
n, (3.101)

−iDR̃3+n = −i∇̂R̃3+n − 4

3
b̂R̃3+n + (ĥ1n−1 − iĥ2n−1)R̃

3+n+1 (3.102)

+ (ĥ1n+1 + iĥ2n+1)R̃
3+n+2 − (ĥ3n−1 − ĥ3n+1)R̃

3+n,

iDL̂n = i∇L̂n +
b

3
L̂n + [(w1

n + iw2
n)L

3+n − w3
nL̂

n] (3.103)

+(h1n−1 + ih2n−1)L̂
n+1 + (h1n+1 − ih2n+1)L̂

n+2 − (h3n−1 − h3n+1)L̂
n,

iD̃L
3+n

= i∇̃L3+n
+

b

3
L
3+n

+ [(w1
n − iw2

n)L̂
n +w3

nL
3+n

] (3.104)

+(h1n−1 + ih2n−1)L
3+n+1

+ (h1n+1 − ih2n+1)L
3+n+2 − (h3n−1 − h3n+1)L

3+n
.

For making this gauge-invariant derivative compatible with the mass term
(and we recall that the mass term allows us a direct link with inertia and
gravitation), we derive this in a manner completely analogous to that used
in 2.2 for the lepton part of the wave. The mvϕσ12 form of the mass term
of the improved equation of the electron is conserved. The only thing that
changes is the definition of the unitary vector v. We now have indeed twelve
chiral currents:

Dn
R = RnR̃n; Dn

L = LnL̃n; D3+n
R = R̃3+nR3+n; D3+n

L = L̃3+nL3+n,
(3.105)

for n = 2, 3, 4. The Jq current that replaces Jl is the sum of these twelve
chiral currents:

Jq =

n=4∑
n=2

[Dn
R +D3+n

R +Dn
L +D3+n

L ]; ρ2q = (Jq)
2 = JqĴq; vq =

Jq
ρq
. (3.106)

Since the Jq current is the sum of twelve currents the calculation of the
squared scalar product of this vector has twelve squares, all null since each
chiral current is on the light cone. And there are 66 = 12 × 11/2 scalar
products of two distinct currents. Hence the ρ2q term is the sum of 66
relativistically invariant terms:

ρ2q =

n=7∑
n=2

dnd
∗
n +

∑
n,p,q

spqn (spqn )∗

dn = RnL
n
+ LnR

n
= 2ηn†ξn = Dn

R ·Dn
L, (3.107)
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where in the spqn , n = 2, 3, 4, 5, and pq is one of the 15 possible pairs that
may be formed with two different numbers taken among 2, 3, 4, 5, 6, 7:

spq2 = 2ηp†η̂q = −2ηq†η̂p = Dp
L ·Dq

L,

spq3 = 2ηq†ξp = Dp
R ·Dq

L; s
pq
4 = 2ηp†ξq = Dp

L ·Dq
R, (3.108)

spq5 = 2ξ̂p†ξq = −2ξ̂q†ξp = Dp
R ·Dq

R.

The equations with mass term for the quarks are obtained exactly like the
equations of the lepton part (2.76) [45] [50]:

0 = DL̂n + q1vqL̂
nσ12; 0 = D̂Rn + q2v̂qR

nσ12,

0 = DL
3+n

+ q3vqL
3+n

σ12; 0 = D̂R̃3+n + q4v̂qR̃
3+nσ12, (3.109)

and always for n = 2, 3, 4. We have four equations in triplicates; thus we
consider four proper masses ℏcqj , j = 1, 2, 3, 4. As in 2.2 the mass term
mΨn accounts for the separation of the Ψn wave into four parts:

Ψn
dL =

(
Ln 0

)
; Ψn

uL =
(
0 L̃3+n

)
,

Ψn
dR =

(
Rn 0

)
; Ψn

uR =
(
0 R̃3+n

)
(3.110)

m(Ψn) = q1Ψ
n
dL + q2Ψ

n
dR + q3Ψ

n
uL + q4Ψ

n
uR (3.111)

=
(
q1L

n + q2R
n q3L̃

3+n + q4R̃
3+n
)
.

And we gather these four equations (3.109) together into:

0 = DΨn + vqm(Ψn)γ21; vq =
(
0 vq

)
; v2

q = 1. (3.112)

Next letting:

M(Ψ) =

(
vq[m(Ψ2)−m(Ψ3)] vm(Ψ1)− ivqm(Ψ4)
vm(Ψ1) + ivqm(Ψ4) vq[m(Ψ2) +m(Ψ3)]

)
, (3.113)

The wave equation that generalizes the improved equation of the electron
is then expressed as

0 = DΨΓ012 +M(Ψ)Γ0, (3.114)

while the equation invariant under Cl∗3 (we recall that this invariance auto-
matically implies relativistic invariance) is obtained simply by multiplying
on the left side by the reverse:

0 = Ψ̃DΨΓ012 + Ψ̃M(Ψ)Γ0. (3.115)

It is the strict link between the reversion in Cl3,3 and the reversion in Cl1,3
which enables the complete separation of the mass term of the lepton part
from the quark part. This strict link is nontrivial and is established in B.2 .
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Moreover except in a very particular case, Ψ(x) is invertible. We may thus
derive the invariant form (3.115) from (3.114) by multiplying on the left
side by Ψ̃. And multiplying the left side of (3.115) by Ψ̃−1, we can derive
the usual (3.114) form. We recall that this justifies, for all lepton waves,
that we are able to derive the wave equations from the Lagrangian density.
Then the same behavior is observed for the quark waves.

3.4 Invariance
The invariance of the (3.109) equations is similar to that of the leptonic

wave studied in 2.3. For the form invariance that includes relativistic in-
variance, it is enough to add to (2.81) and (2.82), and to the covariance of
the b and wj potentials that of the g3Gk or hm that are derived from (3.87):

hmn =Mh′
m
n M̂ ; qn = rq′n; r = |det(M)|. (3.116)

We derive:

0 = D′L̂′n + q′1v
′
qL̂

′nσ12; 0 = D̂′R′n + q′2v̂
′
qR

′nσ12,

0 = D′L
′3+n

+ q′3v
′
qL

′3+n
σ12; 0 = D̂′R̃′3+n + q′4v̂

′
qR̃

′3+nσ12, (3.117)

which implies the form invariance of the wave equations.
The gauge invariance under the U(1) group generated by P 0 results from

the equalities (2.93)–(2.94) in which it is enough to replace P0 by P 0 with
the Ψ in (3.1). What changes from the lepton case comes only with P 0

which gives:

P 0(Ψ) =

(
P0(Ψ

1) P0(Ψ
2)

P0(Ψ
3) P0(Ψ

4)

)
; P0(Ψ

n) = −1

3
Ψnγ21 +

1

2
(Ψni+ iΨnγ30),

P0(Ψ
n) = − i

3

(
Rn − Ln R̃3+n − L̃3+n

)
+ i
(
Rn −R̃3+n

)
=
(

2i
3 R

n + i
3L

n − 4i
3 R̃

3+n + i
3 L̃

3+n
)
, n = 2, 3, 4. (3.118)

We then have:

Ψ′n = [exp(a0P0)](Ψ
n) =

(
R′n + L′n R̃′3+n + L̃′3+n

)
,

R′n = e2ia
0/3Rn; L′n = eia

0/3Ln, (3.119)

R̃′3+n = e−4ia0/3R̃3+n; L̃′3+n = eia
0/3L̃3+n.

All left waves turn with the same angle a0/3, and only the left waves have
this property. This is how they come to be invariant under the SU(2) gauge
group mixing the different left waves. We get:

D′n
R = R′nR̃′n = e2ia

0/3Rne−2ia0/3R̃n = RnR̃n = Dn
R. (3.120)



3.4. INVARIANCE 143

And similarly we have:

D′n
L = Dn

L; D′3+n
L = D3+n

L ; D′3+n
R = D3+n

R ; J′q = Jq; v′q = vq, (3.121)

and so the mass terms of the wave equations are invariant under the U(1)
gauge group. As in the case of the leptonic wave all left waves transform in
the same manner: this is what is responsible for the commutation between
the P 0 operator and the three P j , j = 1, 2, 3. To study the other parts of
the gauge group we start from (3.95), so that for n = 2 and with (3.91) we
have

DΨ2 = ∂∂∂Ψ2 + bP0(Ψ
2) +wjPj(Ψ

2) + S(Ψ2)

= ∂∂∂Ψ2 + bP0(Ψ
2) +wjPj(Ψ

2) (3.122)

+ (h1
2 − h2

2i)iΨ
4 − h3

2iΨ
3 + (h1

1 + h2
1i)iΨ

2 + h3
1iΨ

3.

With (3.1) to (3.18) the previous equation is equivalent to the system:

iDϕ
5
= i∇ϕ5 − b(

4

3
R

5
+

1

3
L
5
) + [(w1

2 − iw2
2)L̂

2 +w3
2L

5
]

+ [(h11 + ih21)ϕ
6 − h31ϕ

5
] + [(h13 − ih23)ϕ

7
+ h33ϕ

5
], (3.123)

iDϕ̂2 = i∇ϕ̂2 + b(
2

3
R̂2 +

1

3
L̂5) + [(w1

2 + iw2
2)L

5 − w3
2L̂

2]

+ [(h11 + ih21)ϕ̂
3 − h31ϕ̂

2] + [(h13 − ih23)ϕ̂
4 + h33ϕ̂

2],

There are two other equations when using the matrix representation of
Cl1,3, which are equivalent to the two previous ones and result from the
main automorphism P : M 7→ M̂ . Next, by using this automorphism for
the right waves we get the equivalent system:

iDη5 = i∇η5 + b

3
η5 + [(w1

2 − iw2
2)η

2 +w3
2η

5]

+ [(h11 + ih21)η
6 − h31η

5] + [(h13 − ih23)η
7 + h33η

5],

iDη2 = i∇η2 + b

3
η2 + [(w1

2 + iw2
2)η

5 − w3
2η

2]

+ [(h11 + ih21)η
3 − h31η

2] + [(h13 − ih23)η
4 + h33η

2], (3.124)

−iD̂ξ2 = −i∇̂ξ2 + 2

3
b̂ξ2 + [(ĥ11 − iĥ21)ξ

3 − ĥ31ξ
2] + [(ĥ13 + iĥ23)ξ

4 + ĥ33ξ
2],

−iD̂ξ5 = −i∇̂ξ5 − 4

3
b̂ξ5 + [(ĥ11 − iĥ21)ξ

6 − ĥ31ξ
5] + [(ĥ13 + iĥ23)ξ

7 + ĥ33ξ
5].

Next we have two other systems with the same structure which are obtained
by circularly permuting the indices 2, 3, 4 and 5, 6, 7 (corresponding to the
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r, g, b colors of the quarks) everywhere these indices are present:

iDη6 = i∇η6 + b

3
η6 + [(w1

3 − iw2
3)η

3 +w3
3η

6]

+ [(h12 + ih22)η
7 − h32η

6] + [(h11 − ih21)η
5 + h31η

6],

iDη3 = i∇η3 + b

3
η3 + [(w1

3 + iw2
3)η

6 − w3
3η

3]

+ [(h12 + ih22)η
4 − h32η

3] + [(h11 − ih21)η
2 + h31η

3], (3.125)

−iD̂ξ3 = −i∇̂ξ3 + 2

3
b̂ξ3 + [(ĥ12 − iĥ22)ξ

4 − ĥ32ξ
3] + [(ĥ11 + iĥ21)ξ

2 + ĥ31ξ
3],

−iD̂ξ6 = −i∇̂ξ6 − 4

3
b̂ξ6 + [(ĥ12 − iĥ22)ξ

7 − ĥ32ξ
6] + [(ĥ11 + iĥ21)ξ

5 + ĥ31ξ
6].

iDη7 = i∇η7 + b

3
η7 + [(w1

1 − iw2
1)η

4 +w3
1η

7]

+ [(h13 + ih23)η
5 − h33η

7] + [(h12 − ih22)η
6 + h32η

7],

iDη4 = i∇η4 + b

3
η4 + [(w1

1 + iw2
1)η

7 − w3
1η

4]

+ [(h13 + ih23)η
2 − h33η

4] + [(h12 − ih22)η
3 + h32η

4],

−iD̂ξ4 = −i∇̂ξ4 + 2

3
b̂ξ4 + [(ĥ13 − iĥ23)ξ

2 − ĥ33ξ
4] + [(ĥ12 + iĥ22)ξ

3 + ĥ32ξ
4],

−iD̂ξ7 = −i∇̂ξ7 − 4

3
b̂ξ7 + [(ĥ13 − iĥ23)ξ

5 − ĥ33ξ
7] + [(ĥ12 + iĥ22)ξ

6 + ĥ32ξ
7].

The invariance under the SU(2) group is the same as what we saw for the
leptonic wave. This invariance actually results from:

Dn, 3+n
L − idn, 3+n

L = 2LnL3+n; Dn
L = LnL̃n; D3+n

L = L̃3+nL3+n,

w1
n =

g2
2
Dn, 3+n

L ; w2
n =

g2
2
dn, 3+n
L ; w3

n =
g2
2
(D3+n

L −Dn
L), (3.126)

which are enough to obtain the gauge invariance, as we saw in 2.3.2. And
this gives the U(1)× SU(2) structure of the electroweak gauge group. The
only difference from the Standard Model is that we do not need to postulate
this result: we derive the structure from the operators themselves.

For the SU(2) part of the electroweak gauge group, and since the invari-
ance has exactly the same form as in 2.3.2 , we obtain the following, using
the same identities as (2.140) and (2.141) (a detailed calculation is in D.3):

(W 1
n + iW 2

n)L
3+n −W 3

nL̂
n = −3L̃3+nL3+nL̂n = −3D3+n

L L̂n = −3W 3
nL̂

n,

(W 1
n − iW 2

n)L̂
n +W 3

nL
3+n

= −3LnL̃nL
3+n

= −3Dn
LL

3+n
= 3W 3

nL
3+n

.
(3.127)

In the case of the quarks we have moreover the same formula of transforma-
tion for n = 2, 3, 4; this gives the commutation between the Pn and the Λk

operators of the group of chromodynamics, which act only on the n index,
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thus giving rise to the U(1)× SU(2)× SU(3) structure of the gauge group
of the Standard Model. The gauge invariance under the SU(3) group gives
a simplification of the wave equations with proper mass (see D.3). Our
improved equations have the form:

0 = DL̂n + iq1vqL̂
n; 0 = D̂Rn + iq2v̂qR

n,

0 = D̃L
3+n

+ iq3vqL
3+n

; 0 = DR̃3+n + iq4v̂qR̃
3+n, (3.128)

DL̂n = σµ
[
∂µ + i

(
− bµ

3
+ 3w3

nµ − 3hd3Ln+1µ + 3hd3Ln−1µ

)]
L̂n, (3.129)

D̂Rn = σ̂µ
[
∂µ + i

(2bµ
3

+ 3hd3Rn+1µ − 3hd3Rn−1µ

)]
Rn, (3.130)

D̃L
3+n

= σµ
[
∂µ + i

(
− bµ

3
− 3w3

nµ − 3hu3Ln+1µ + 3hu3Ln−1µ

)]
L
3+n

,

(3.131)

DR̃3+n = σ̂µ
[
∂µ + i

(
− 4bµ

3
+ 3hu3Rn+1µ − 3hu3Rn−1µ

)]
R̃3+n. (3.132)

Here the w potentials depend on color and moreover the h potentials have
a double dependence: their two indices with value 2, 3, 4 come from the
generators of the SU(3) group, while their indices L,R and d, u are linked
with the spinors on which they act. Then the wave equations that are used
to obtain the Lagrangian density are the equations governing right and left
waves.

3.5 Wave equation – Lagrangian density
We multiply the wave equations (3.128) of ηn by −imηn†/q1, the wave
equations of ξn by −imξn†/q2, the wave equations of η3+n by −imη3+n†/q3
and finally the wave equations of ξ3+n by −imξ3+n†/q4, always by the left
side. For the lepton part we saw in Chapter 2 how the Lagrangian density
of the electron wave is generalized for several Lagrangian densities coming
from the different wave equations. Among these densities, L+

q is obtained
as the sum of the different real parts, and L−

q is obtained as the difference
between the real parts coming from the left waves and the right waves. Since
the ρq density is calculated like ρl we will get similar results. We let:

L+
q =

4∑
n=2

[ m
km1

ηn†σµ(−i∂µ + d1nµ) +
m

km2
ξn†σ̂µ(−i∂µ + d2nµ)

+ m
km3

η3+n†σµ(−i∂µ + d3nµ) +
m

km4
ξ3+n†σ̂µ(−i∂µ + d4nµ)

]
,

(3.133)
where we may set:

d1µ = −bµ
3

+ 3w3
nµ − 3hd3Ln+1µ + 3hd3Ln−1µ + q1vqµ,

d2µ =
2bµ
3

+ 3hd3Rn+1µ − 3hd3Rn−1µ + q2vqµ, (3.134)
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d3µ = −bµ
3

− 3w3
nµ − 3hu3Ln+1µ + 3hu3Ln−1µ + q3vqµ,

d4µ = −4bµ
3

+ 3hu3Rn+1µ − 3hu3Rn−1µ + q4vqµ, (3.135)

The Lagrangian densities L+
q and L−

q satisfy:

0 = kL+
q =

4∑
n=2


m
q1
(−iηn†σµ∂µη

n + d1µD
nµ
L ) + m

q2
(−iξn†σ̂µ∂µξ

n + d2µD
nµ
R )

+m
q3
(−iη3+n†σµ∂µη

3+n + d3µD
3+nµ
L )

+m
q4
(−iξ3+n†σ̂µ∂µξ

3+n + d4µD
3+nµ
R )

 ,
(3.136)

0 = kL−
q =

4∑
n=2

−
m
q1
(−iηn†σµ∂µη

n + d1µD
nµ
L ) + m

q2
(−iξn†σ̂µ∂µξ

n + d2µD
nµ
R )

−m
q3
(−iη3+n†σµ∂µη

3+n + d3µD
3+nµ
L )

+m
q4
(−iξ3+n†σ̂µ∂µξ

3+n + d4µD
3+nµ
R )

 .
(3.137)

The fact that these Lagrangian densities are null at each point of space-
time is due to their construction from (3.129) to (3.132). Moreover these
tensor densities are real because their imaginary part is null. We see this
for instance in (3.129) which for n = 2 gives:

0 = η2†σµ[−i∂µ − bµ/3 + 3w3
2µ − 3hd3L3µ + 3hd3L1µ + q1vµ]η

2, (3.138)

0 = [i∂µη
2†σµη2 + η2†(−bµ/3 + 3w3

2µ − 3hd3L3µ + 3hd3L1µ + q1vµ)]η
2.

Then subtracting we get:

0 = −i(η2†σµ∂µη
2 + ∂µη

2†σµη2) = −i∂µ(η2†σµη2); 0 = ∂µD
2µ
L . (3.139)

The left current D2
L is thus conservative. It is the same for the different

currents: all the left or right currents are conservative and on the light
cone. We now calculate the mass term of the L+

q density. We get:

m

4∑
n=2

(Dnµ
L +Dnµ

R +D3+nµ
L +D3+nµ

R )vqµ = mJµq vqµ = mρqv
2
q = mρq.

(3.140)
As with the lepton case we may consider the dk vectors in (3.134) as a sum
of a part gkn coming from the gauge terms and a part qkvq resulting from
inertia. We then replace dk by:

dk = gkn + qkvq; D
k
nµ = ∂µ + i(gknµ + qkvqµ); aδ

k
nµb = a(Dk

nµb)− (Dk∗
nµa)b.
(3.141)

And we have:

g1n = −b

3
+ 3w3

n − 3hd3Ln+1 + 3hd3Ln−1; g
2
n =

2b

3
+ 3hd3Rn+1 − 3hd3Rn−1,
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g3n = −b

3
− 3w3

n − 3hu3Ln+1 + 3hu3Ln−1; g
4
n = −4b

3
+ 3hu3Rn+1 − 3hu3Rn−1.

(3.142)

kL+
q =

1

2

4∑
n=2

[ m
q1
ηn†σµδ1nµη

n + m
q2
ξn†σ̂µδ2nµξ

n

+m
q3
η3+n†σµδ3nµη

3+n + m
q4
ξ3+n†σ̂µδ4nµξ

3+n

]
, (3.143)

kL−
q =

1

2

4∑
n=2

[ −m
q1
ηn†σµδ1nµη

n + m
q2
ξn†σ̂µδ2nµξ

n

−m
q3
η3+n†σµδ3nµη

3+n + m
q4
ξ3+n†σ̂µδ4nµξ

3+n

]
. (3.144)

The Lagrangian density L+
q is a sum of twelve terms, with the same

structure as the four terms that we had in Chapter 2 for the leptonic wave.
We may thus replicate what we detailed in 2.3.4. Since there we used
only the algebraic properties of multiplication in Cl3, we can easily redo
with ηn what we proved with η1. Moreover, ξn acts like ξ1, η3+n acts like
η8 and ξ3+n acts like ξ8. Thus the wave equations allow us to arrive at
0 = L+

q , and moreover the Lagrange equations, without any supplementary
condition, allow us to obtain for each spinor the real equations equivalent to
the wave equation expressed in Cl3. When we vary the Lagrangian density
in relation to the variables contained in η2, the gauge potentials introduce
no supplementary term. This comes from the mechanism described in 2.3.4
for the b potential, as well as for the other potentials, because w3

3 acts on η2
only by the term D5

L. This is the same for the potentials of chromodynamics.
The h3L3 potential acts on η2 only by the D3

L term, and h3L1 acts on the η2
term only by the D4

L term.
About the antiparticles we may also use without any change what we

said about the electron in Chapter 1 and about the lepton wave in Chapter
2. The only change in this passing to the “anti-world” is the replacement of
the ∂µ by −∂µ and the exchange of η and ξ. The double link between the
wave equation and the Lagrangian density is totally conserved.

3.6 Energy–momentum tensors
Here as well we again obtain what we learned from the Dirac equation

and from its extension to the lepton wave: the existence of not only one
Lagrangian density and one energy–momentum tensor associated to the
invariance under translation, but at least two tensors that we must study.
With the gkn in (3.142) and with the mass term (3.140) we may read the
Lagrangian density L+

q in (3.143) as:

kL+
q = mρq +

4∑
n=2


m
q1
ℜ(−iηn†σµ∂µη

n) + m
q1
g1nµη

n†σµηn

m
q2
ℜ(−iξn†σ̂µ∂µξ

n) + m
q2
g2nµξ

n†σ̂µξn

m
q3
ℜ(−iη3+n†σµ∂µη

3+n) + m
q3
g3nµη

3+n†σµη3+n

m
q4
ℜ(−iξ3+n†σ̂µ∂µξ

3+n) + m
q4
g4nµξ

3+n†σ̂µξ3+n

 .
(3.145)
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This Lagrangian density is the sum of twelve terms. It is invariant un-
der space-time translations; thus a conservative tensor density of energy–
momentum is associated, the sum of twelve densities:

T =

4∑
n=2

( m

kq1
Tn
L +

m

kq2
Tn
R +

m

kq3
T 3+n
L +

m

kq4
T 3+n
R

)
, (3.146)

Tnµ
Lλ = ℜ(iηn†σµ∂λη

n)− g1nλη
n†σµηn, (3.147)

Tnµ
Rλ = ℜ(iξn†σ̂µ∂λξ

n)− g2nλξ
n†σ̂µξn, (3.148)

T 3+nµ
Lλ = ℜ(iη3+n†σµ∂λη

3+n)− g3nλη
3+n†σµη3+n, (3.149)

T 3+nµ
Rλ = ℜ(iξ3+n†σ̂µ∂λξ

3+n)− g4nλξ
3+n†σ̂µξ3+n. (3.150)

In particular, for the T 0
0 component we have:

T 0
0 =

4∑
n=2

( m

kq1
Tn0
L0 +

m

kq2
Tn0
R0 +

m

kq3
T 3+n0
L0 +

m

kq4
T 3+n0
R0

)
, (3.151)

Tn0
L0 = ℜ(iηn†∂0ηn)− g1n0η

n†ηn, (3.152)

Tn0
R0 = ℜ(iξn†∂0ξn)− g2n0ξ

n†ξn, (3.153)

T 3+n0
L0 = ℜ(iη3+n†∂0η

3+n)− g3n0η
3+n†η3+n, (3.154)

T 3+n0
R0 = ℜ(iξ3+n†∂µξ

3+n)− g4n0ξ
3+n†ξ3+n. (3.155)

For a solution to the wave equation with an energy E of the whole wave,
we have:

−idµ = −i∂µ + gknµ,

−id0ξn =
E

ℏc
ξn(x⃗); −id0ξ3+n =

E

ℏc
ξ3+n(x⃗), (3.156)

−id0ηn =
E

ℏc
ηn(x⃗); −id0η3+n =

E

ℏc
η3+n(x⃗).

We then have:

−T 0
0 =

E

ℏc

4∑
n=2

[ m

kq1
ηn†ηn +

m

kq2
ξn†ξn +

m

kq3
η3+n†η3+n +

m

kq4
ξ3+n†ξ3+n

]
=
E

ℏc
(
m

kq1
Sd
L +

m

kq2
Sd
R +

m

kq3
Su
L +

m

kq4
Su
R)

0 =
E

ℏc
J0, (3.157)

Sd
L =

4∑
n=2

ηn†ηn; Sd
R =

4∑
n=2

ξn†ξn; Su
L =

4∑
n=2

η3+n†η3+n; Su
R =

4∑
n=2

ξ3+n†ξ3+n,

naming J the weighted current with the relative weights m/kqj . As in Chap-
ter 2, this weighted current replaces the probability current of Chapter 1.
The reason for the existence of a probability current in quantum mechanics
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is still the equivalence between inertial mass and gravitational mass, which
implies:

0 = E +

∫∫∫
dvT 0

0 ;

∫∫∫
J0

ℏc
dv = 1. (3.158)

As for the lone electron or for the lepton wave we have two useful tensors
of energy–momentum instead of only one. The second tensor is the V of
Costa de Beauregard [51] that is obtained from the invariance under the
translations of the Lagrangian density L−

q . This V reads:

kV =

4∑
n=2

(m
q1
Tn
L − m

q2
Tn
R +

m

q3
T 3+n
L − m

q4
T 3+n
R

)
. (3.159)

The dynamics of the quarks comes from the variations of the energy–
momentum tensor. The calculation is similar to that for the lepton wave.
We have:

k∂µT
µ =

4∑
n=2

(m
q1
∂µT

nµ
L +

m

q2
∂µT

nµ
R +

m

q3
∂µT

3+nµ
L +

m

q4
∂µT

3+nµ
R

)
. (3.160)

For the first of these four terms we obtain:

∂µT
nµ
L = ∂µT

nµ
Lλσ

λ = ∂µ[iη
n†σµ∂λη

n − g1nλD
nµ
L ]σλ

= [i(∇ηn)†∂ληn + iηn†∂λ(∇ηn)− (∂µg
1
nλ)D

nµ
L − g1nλ∂µD

nµ
L ]σλ. (3.161)

And we have with (3.105) and with (B.95) and (B.96):

∇ηn = −i(g1n + q1vq)η
n, (3.162)

∂µD
nµ
L = (∂µη

n†)σµηn + ηn†σµ(∂µη
n)

= iηn†(g1n + q1vq)η
n − iηn†(g1n + q1vq)η

n = 0. (3.163)

This gives:

i(∇ηn)†∂ληn + iηn†∂λ(∇ηn) (3.164)

= −ηn†(g1n + q1vq)∂λη
n + ηn†[(∂λg

1
n)η

n + q1(∂λvq)η
n + (g1n + q1vq)∂λη

n]

= (∂λg
1
nµ + q1∂λvqµ)D

nµ
L . (3.165)

And we then get

−∂µTnµ
L = [(∂µg

1
nλ − ∂λg

1
nµ) + q1∂λvqµ]D

nµ
L σλ. (3.166)

Similarly we next obtain:

−∂µTnµ
R = [(∂µg

2
nλ − ∂λg

2
nµ) + q2∂λvqµ]D

nµ
R σλ, (3.167)

−∂µT 3+nµ
L = [(∂µg

3
nλ − ∂λg

3
nµ) + q3∂λvqµ]D

3+nµ
L σλ, (3.168)

−∂µT 3+nµ
R = [(∂µg

4
nλ − ∂λg

4
nµ) + q4∂λvqµ]D

3+nµ
R σλ. (3.169)
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With

gk =
m

qk

4∑
n=2

gkn; Jq =

7∑
n=2

(Dn
R +Dn

L), (3.170)

we get:

−k∂µTµ =

[
(∂µg

1
λ − ∂λg

1
µ)S

dµ
L + (∂µg

2
λ − ∂λg

2
µ)S

dµ
R

+(∂µg
3
λ − ∂λg

3
µ)S

uµ
L + (∂µg

4
λ − ∂λg

4
µ)S

uµ
R

]
σλ+m(∂λvqµ)J

µ
qσ

λ.

(3.171)
We are thus able to separate the forces acting on the wave into a part acting
on the d quark and a part acting on the u quark, because the only term
shared by the two parts is null. We indeed have:

Jµq = ρqvqµ; J
µ
q ∂λvqµ =

ρq
2
∂λ(vqµv

µ
q ) =

ρq
2
∂λ(1) = 0. (3.172)

We then have for the d quark:

−k∂µTµ
d = [(∂µg

1
λ − ∂λg

1
µ)S

dµ
L + (∂µg

2
λ − ∂λg

2
µ)S

dµ
R ]σλ. (3.173)

And similarly for the u:

−k∂µTµ
u = [(∂µg

3
λ − ∂λg

3
µ)S

uµ
L + (∂µg

4
λ − ∂λg

4
µ)S

uµ
R ]σλ. (3.174)

And we obtain:

g1 =
m

q1
(g12 + g13 + g14) =

m

q1

−b
3 + 3w3

2 − 3hd3L3 + 3hd3L1

−b
3 + 3w3

3 − 3hd3L1 + 3hd3L2

−b
3 + 3w3

4 − 3hd3L2 + 3hd3L3


=

m

q1

[
− g1

2
B +

3g2
2

(D5
L −D2

L +D6
L −D3

L +D7
L −D4

L)
]

(3.175)

=
m

q1

[
− g1

2
B +

3g2
2

(Su
L − Sd

L)
]
.

Between the first and the second line the potentials of chromodynamics
completely disappear. This implies that there are no strong forces for a
wave of quarks that equally contains the three color states. And this is well
known in nuclear physics where there are no stable states formed by three
d quarks or three u quarks with color r, g and b.

This result is very important because this explains why we cannot place
in the same wave the quarks composing a proton and a neutron. Above all
this means that the proton or the neutron is a unique wave containing the
three colored quarks. We now see that it is this wave of the proton or the
neutron which has a quantized kinetic momentum, not a lone quark.
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3.7 Quantization of the kinetic momentum
We may again use what we have shown in Chapter 2 for the lepton wave.

First we have instead of (2.249):

kV µ
λ =

4∑
n=2

ℜ
[ −i(mq1 η

n†σµdλη
n − m

q2
ξn†σ̂µdλξ

n)

−i(mq3 η
3+n†σµdλη

3+n − m
q4
ξ3+n†σ̂µdλξ

3+n)

]
. (3.176)

We have twelve fields of spinors, six left and six right ones instead of lepton
wave’s four, but with very similar properties. Now we let:

φn = ηn; φ6+n = ξn, n = 2, 3, . . . , 7. (3.177)

Next, as in (2.257) and (2.259) :

δφa = ϕai δω
i

ηn + δηn = M̂ηn; ξn + δξn =Mξn. (3.178)

We then obtain as in (2.262) to (2.265):

ϕn0 =
ηn

2
; ϕn1 = −σ1

ηn

2
; ϕn2 = −σ2

ηn

2
; ϕn3 = −σ3

ηn

2
,

ϕn4 = iσ1
ηn

2
; ϕn5 = iσ2

ηn

2
; ϕn6 = iσ3

ηn

2
; ϕn7 = −iη

n

2
, (3.179)

ϕ6+n
0 =

ξn

2
; ϕ6+n

1 = σ1
ξn

2
; ϕ6+n

2 = σ2
ξn

2
; ϕ6+n

3 = σ3
ξn

2
,

ϕ6+n
4 = iσ1

ξn

2
; ϕ6+n

5 = iσ2
ξn

2
; ϕ6+n

6 = iσ3
ξ6+n

2
; ϕ6+n

7 = i
ξn

2
. (3.180)

Hence we always have (2.266) to (2.270), without changes other than the
replacement of the Lagrangian densities from the lepton wave by those from
the waves of quarks. We then now have:

jµ7 = − ∂L−

∂(∂µφa)
ϕa7 (3.181)

jµ7 =

4∑
n=2

[
i
m

q1
ηn†σµ

(−i
2

)
ηn − i

m

q2
ξn†σ̂µ

( i
2

)
ξn

+ i
m

q3
η3+n†σµ

(−i
2

)
η2+n − i

m

q4
ξ3+n†σ̂µ

( i
2

)
ξ3+n

]
. (3.182)

With (3.157) we then have:

j7 =
1

2

[ m

kq1
Sd
L +

m

kq2
Sd
R +

m

kq3
Su
L +

m

kq4
Su
R

]
=

1

2
Jq. (3.183)

And thus (3.158) gives:∫∫∫
dvJ0

q = ℏc;
∫∫∫

dv
j07
c

=
1

2c

∫∫∫
dvJ0

q =
ℏ
2
. (3.184)
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This gives the quantization of kinetic momentum of the proton or the neu-
tron. This satisfies all known properties of these two kinds of particles. The
quantization of kinetic momentum is thus for the electrons and also for the
protons and neutrons, a direct consequence of the wave equations of these
particles and of the invariance under the extended group Cl∗3.

This quantization of kinetic momentum, not of each of the quarks sep-
arately but of the proton and the neutron with their three colored quarks,
has a very well-known experimental consequence: it is impossible to move a
lone quark outside a proton or a neutron. In spite of the fact that they are
made of several waves, only the protons and the neutrons have a possible
individuality. This corresponds to the existence of a proper kinetic momen-
tum that is always an odd integer multiple of ℏ/2. The only objects that
we may see in an individual manner in any experiment of physics are those
with a kinetic momentum multiple of ℏ/2. This kinetic momentum may
be a multiple of ℏ in the case of bosons. We may encounter 3ℏ/2 for some
hadrons or for states with five quarks. But the kinetic momentum cannot
be smaller than ℏ/2 because all the objects that we can test in any physics
experiment cannot have a kinetic momentum smaller than ℏ/2.

We recall that the quantization of kinetic momentum is at the origin
of Heisenberg’s inequalities (see [58]). These inequalities thus apply to any
proton or neutron. The fact that quantum mechanics works similarly for
an electron, a proton or a neutron gives the same “fundamental particle”
character to these objects, and seems to question the quark model which is
at the core of the Standard Model. Nevertheless it is the wave of a quark
that is similar to the wave of an electron, not the wave of a proton or
neutron. Once again, this supports the Standard Model.

3.7.1 Case of the lone proton or the lone neutron
The proton is made of two u quarks and one d quark. Since the color

of the different nucleons does not add, the Standard Model says the proton
(or the neutron) is color neutral. We may then suppose, for instance, that
a proton is at a given instant made of a ur quark, a ug quark and a db
quark. From our previous calculations the proton is then composed of only
six non-null spinor waves: L4, L5, L6 and R4, R5, R6, all other spinor waves
being exactly null. The Jq and J currents are thus the sum of only six
spinor currents instead of the twelve possible currents:

Jq = D4
L +D5

L +D6
L +D4

R +D5
R +D6

R. (3.185)

The Lagrangian density of the proton hence comes from (3.136):

0 = L+ =
m

q1
(−iη4†σµ∂µη

4 + d1µD
4µ
L ) +

m

q2
(−iξ4†σ̂µ∂µξ

4 + d2µD
4µ
R )

+

3∑
n=2

[
m
q3
(−iη3+n†σµ∂µη

3+n + d3µD
3+nµ
L )

+m
q4
(−iξ3+n†σ̂µ∂µξ

3+n + d4µD
3+nµ
R )

]
, (3.186)
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where dk is taken from (3.134), in which we replace n by 4 for the calculation
of d1 and d2, and we consider only n = 2 and n = 3 for the calculation of d3
and d4. The same restrictions on the indices must be done in the calculation
of the energy–momentum tensors and the kinetic momentum tensors, as
well as in the calculation of the forces of inertia. The only part of the
calculation that changes is in (3.175) where the square brackets include
only one line instead of three. And the u quark uses two of the three lines
of the square brackets. And it is the sum of the three lines that disappears,
this comes from dimension 8 and not 9 of the group of chromodynamics.
Strong interactions do not then disappear for a lone proton.

The case is similar for a neutron made of a u quark and two d quarks.
There are also only six non-null spinor waves, for instance L2, L3, L7 and
R2, R3, R7. The quantization of kinetic momentum applies to both proton
and neutron – this is in accordance with particle physics. Protons and
neutrons were discovered many years before the hypothesis that they are
made of three quarks linked together by the forces of chromodynamics.
The main problem of this hypothesis is the confinement of the quarks, the
practical impossibility to bring a quark out of the bags that are mesons and
baryons.

The previous calculation explains this confinement: the quantum of ki-
netic momentum exists for a proton made of three quarks or for a neutron,
not for an isolated quark. This quantum of kinetic momentum exists also
for a lone electron, a lone neutrino, or for an electron–neutrino pair. If a
lone quark was able to get a quantum of kinetic momentum it should be
possible to push this quark out of the bag, but there is no kinetic momen-
tum lower than ℏ/2. Particles accelerators use electrons and protons which
each have one quantum of kinetic momentum. The only objects that the
collisions can produce also have a kinetic momentum nℏ/2, where n is an
integer that may be null if the object (a meson) contains two opposite ℏ/2
spins. Actually this quantum of kinetic momentum also explains another re-
striction: we never observe a left neutrino alone just as we never see a quark
alone. We see a left neutrino only with a charged particle when and where
they interact, or with a right neutrino, or with both a right neutrino and
an electron or another particle with an electric charge. But the complete
neutrino, which we may also call the magnetic monopole, has a quantum
of kinetic momentum and can then be considered as an observable particle.
And there is already some evidence of its being observed [36, 48, 49, 82].

3.8 Preference for left waves
Since the P transformation P :M 7→ M̂ is an automorphism of Cl3, the

ring End(Cl3) = Cl3,3 contains the subring Diag[End(Cl3)] of all:

Ψe =

(
ψe 0
0 ψe

)
; ψe =

(
ϕe 0

0 ϕ̂e

)
. (3.187)
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This subring may be considered as Cl3 (because the P conjugation is the
main automorphism), so Cl3 is a subring of End(Cl3) and the operations
of the Cl3 ring are a particular case of the operations on End(Cl3). The
result is an identification between the wave of first quantization ϕe and the
wave of second quantization (an operator) Ψe. Now Cl3 is also the set
of the P1 = α + A + ζi of (B.96), which is the even subalgebra Cl+1,3 of
Cl1,3. We detailed this isomorphism in B.1.1 . With A = a⃗ + ib⃗ we have
P1 = α+ a⃗+ ib⃗+ ζi whose self-adjoint part is α+ a⃗. Quantum mechanics
included space-time in this framework by setting x = xµσµ (see (1.31),
which gives

det(x) = (x0)2 − (x1)2 − (x2)2 − (x3)2. (3.188)

This automatically introduces the + − − − signature for space-time. It
is the main reason for preferring Cl1,3 to Cl3,1. This other algebra could
be still more important since Cl3,1 =M4(R) is the Majorana algebra. And
End(Cl3) =M8(R), each 8×8 real matrix comprising four 4×4 real matrices.
Starting from the four γµ of (1.4) which generate Cl1,3, the four iγµ generate
Cl3,1. The even subalgebra Cl+3,1 is thus the set of all

P̃1 = α−A+ ζi = α− a⃗− ib⃗+ ζi. (3.189)

Hence for space-time as the self-adjoint part of Cl3, the passing from the
Cl+1,3 version of Cl3 to the Cl+3,1 version of the same Cl3 induces a transfor-
mation from α + a⃗ to α − a⃗, which is the P (parity) transformation. It is
the use of Cl+1,3 and the non-use of Cl+3,1 in Chapter 1 and Chapter 2 that
fixes the preference for one of the two possible orientations of space, by the
identification:

ϕe ∈ Cl3 = ψe ∈ Cl+1,3 = Ψe ∈ Diag[End(Cl3)]. (3.190)

This identification explains why second quantization may use all the results
of first quantization in the electron case. The use of Cl1,3 both for the
electron wave and for space-time, as required by the determinant, leads to
the use of ∇ϕ̂e. And the left wave is the left column of ϕ̂e. Next there are two
gauge invariances, the electric gauge generated by the 2-vector σ2σ1 = −iσ3
and the chiral gauge generated by the 3-vector i. Under the electric gauge
the left wave Le rotates like ϕ̂e, the right wave Re rotates like ϕe, and
because îσ3 = iσ3 then Re rotates like Le. Since L(−iσ3) = −iL then Le

rotates with opposite angles under the electric gauge and the chiral gauge.
This results in the equalities of the coefficients of B for the left waves, seen
in 2.2 in the lepton case and in 3.4 in the quark case. Next the value
sin(θW ) = 1/2 in (2.210) comes from the fact that A is the electric gauge
potential. And this implies in (2.213) the suppression of the only term
qAL

8
. The term qAR

8
is not suppressed. This is the origin of the “maximal

parity violation” in weak interactions.



Chapter 4

Gravitation

The space-time manifold of general relativity is a submanifold
in Cl∗3. The connection of this manifold is calculated both from
the quantum wave (gravitation) and from the invariance group
(inertia). Equations of the gravitational field are as in general
relativity an equivalence between inertia and gravitation. The
i which defines the orientation of space belongs both to the in-
variance group and to the gauge group. We generalize the form-
invariant derivative. This derivative simplifies the weak interac-
tions part for quark waves. We study the double link between
wave equations in the usual form and form-invariant equations,
its consequences on the conservation of currents, and the homo-
thety ratio. We show the compatibility between gravitation and
our results for the energy–momentum and kinetic momentum ten-
sor densities. We revisit the link between the Pauli principle
and gravitation. Instead of propagating in a linear configuration
space, the fermion wave propagates in the space-time manifold.
The whole space-time accounts for the possible resolution of the
EPR problem. The duality of the Lie group versus Lie algebra
explains the arrow of time and the expansion of the universe.

The space-time manifold of general relativity has naturally been thought
of as a Riemannian manifold based on properties of the space-time metric.
With our choice (1.4) of matrices we have:

x := xµγµ =

(
0 x
x̂ 0

)
; x = xµσµ. (4.1)
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The similitude R defined by the dilator M satisfies with (1.34):

x′ =

(
0 x′

x̂′ 0

)
=

(
M 0

0 M̂

)(
0 x
x̂ 0

)(
M 0
0 M†

)
, (4.2)

x′ = NxÑ ; N :=

(
M 0

0 M̂

)
; Ñ =

(
M 0
0 M†

)
. (4.3)

The electron, in the tangent space-time at each point of the space-time
manifold, has a wave following the improved Dirac equation described in
Chapter 1. The set of N is the even subalgebra Cl+1.3, isomorphic to Cl3.
The Dirac theory restricts M to SL(2,C), which implies:

det(M) = 1; M−1 =M, (4.4)

∇ϕ̂ = σν∂ν ϕ̂ =M∇′M̂ϕ̂ =M−1σµ∂′µM
†−1∂′µϕ̂ =M−1σµM†−1Rν

µ∂ν ϕ̂

σν =M−1σµRν
µ(M

†)−1; σµRν
µ =MσνM†; γµRν

µ = NγνÑ . (4.5)

This calculation is valid as soon as M is a fixed term. But the last relations
(one relation for each value of ν), are carelessly used even in the case of a
variable M . Moreover the N matrix is generally supposed to satisfy:

N =
∑
a<b

eθ
abσσσab ; σσσab :=

1

2
(γaγb − γbγa), θ

ab ∈ R. (4.6)

But in the previous calculations the similitude R is not the dilator M . Even
if M belongs to SL(2,C) the Lorentz transformation R is not the Pauli
matrix M . And unhappily (4.6) may be false: with M = −1 + σ1 + iσ2 we
obtain:

M = − exp[−(σ1 + iσ2)] = eiπ−σ0σ1+σ1σ3 , (4.7)

N = eπσσσ01σσσ23+σσσ01+σσσ13 = eπ(1+2k)σσσ01σσσ23+σσσ01+σσσ13 , k ∈ Z. (4.8)

Thus any calculation based on (4.6) may be false: we must adopt another
approach, which we now develop.

The quantum wave studied in previous chapters introduces a major
change with the inclusion (1.31) of space-time into Cl3, first realized by
Pauli nearly a century ago. This inclusion allows us to obtain the metric
by:

||x||2 = det(x) = xx̂ = xP (x). (4.9)

where P is the parity transformation. This is indeed very different from the
approach of Riemannian geometry: first the norm ||x|| is not a true norm
since det(x) may be positive, zero or negative. Next a determinant is not
a symmetric bilinear form but an antisymmetric one. Moreover the parity
transformation is directly associated to geometry by (4.9). We encountered
in the first chapter another important relation (1.279):

Dx : X 7→ x = ϕXϕ†
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defining the general element X of what we termed “invariant space-time”.
Since det(AB) = det(A) det(B) and since the Mϕ element of SL(2,C) was
defined in (1.157) as ϕ =

√
ρeiβ/2Mϕ, we have:

det(x) = ρdet(X). (4.10)

We saw that for each important solution used in the Dirac theory, ρ = ρ(x)
is nonzero everywhere. And since no observer can travel on the light cone,
x satisfies det(x) ̸= 0, we will then make the hypothesis that det(X) ̸= 0.
This means that X belongs to the Lie group Cl∗3 and the set of X is the
self-adjoint part of Cl∗3, satisfying X = X†. The determinant of a product
is the product of determinants; thus the relation between X and x implies
that x also has a nonzero determinant: this means that the set of x, which
is the space-time manifold, is itself the self-adjoint part of the Lie group
Cl∗3. Whitney’s theorem indicates that any 4-dimensional manifold may be
included in R8, and Cl3 is precisely 8-dimensional on R. Therefore space-
time geometry does not need Cl3 itself (isomorphic to R8 as a manifold) but
geometry needs the Lie group Cl∗3 itself, which is an 8-dimensional separate
manifold having Cl3 as its Lie algebra. Since it is a Lie group, each point
is locally identical to the unity point x = 1. This unity point, as any one,
means an event: “I am here, now”. At this point-event, a tangent space-
time exists, where this event “I am here, now” becomes the zero point of
the Lie algebra Cl3 of the Cl∗3 Lie group. Since distances are given by the
determinant and since this determinant is not null, by definition of Cl∗3, the
light cone of each point-event is only a subset of the tangent space-time at
the considered point-event. This tangent space-time must be distinguished
from space-time itself, because the tangent space-time is itself a flat space.

We saw in 1.1.2 and 1.2 that the invariance group G generalizing to
the relativistic case the invariance group SU(2) of nonrelativistic quan-
tum physics for the particles with spin 1/2, may be, without any difficulty,
extended to the GL(2,C) group, which is the group of all 2 × 2 complex
invertible matrices. This group is isomorphic to the Cl∗3 group, consisting of
all invertible elements in the Cl3 algebra. This algebra contains the group of
its invertible elements, and moreover it is the Lie algebra of this Lie group.
In the previous chapters, we studied the first consequences of this general-
ization of relativistic invariance. The difference between the dilator M and
the similitude R generated by a dilator is the same as in the particular case
of Lorentz transformation: the dilator group is a 8-dimensional Lie group
while the similitude group is only a 7-dimensional group. The kernel of the
homomorphism f : M 7→ R is the 1-dimensional group made of M = eix,
where x is any real number. The f function cannot be invertible: no way
exists to define M from R. It is the true reason explaining why Cl3 is the
most important linear space and why Cl∗3 is the most important invariance
group used in this Chapter. It is so because it is impossible otherwise: the
isomorphism between GL(n,C) and Cl∗p, as Lie groups, exists only if n = 2
and p = 3.
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4.1 Differential geometry

4.1.1 Gravitation from the quantum wave

All differential operators that we used in previous chapters are built from
the ∇ = σµ∂µ operator of the Cl3 algebra. The operator ∂∂∂ = γµ∂µ used by
Hestenes depends on ∇ since we have (see B.1.2):

∂∂∂ =
(
0 ∇

)
. (4.11)

Thus Hestenes’ space-time algebra is only a possible help in calculations, but
has no real necessity: we hence use here only the Cl3 algebra. We go from
the operator ∇ that operates in the neighborhood of the event x = xµσµ to
the operator ∇′ that operates in the neighborhood of the event x′ = x′µσµ
by:

x′ = R(x) =MxM†; ∇ =M∇′M̂ ; ∇′ = σµ∂′µ. (4.12)

We recall that σµ is exactly the same in writing either x or x′, and likewise
for ∇ and ∇′. 1 We explained in 1.8 how the ϕ wave of the electron defines
a similitude:

Dx : X = Xµσµ 7→ x = ϕXϕ† = ϕXνσνϕ
† = XνDν , (4.13)

Dν = Dµ
νσµ = ϕσνϕ

†. (4.14)

So the ϕ function enables an immersion of the space-time manifold into the
8-dimensional manifold, seen from our immersed manifold. The function ϕ
is all that may be seen from our manifold.

We saw in 1.3.2 that the Dν vectors form an orthogonal basis of space-
time (but not an orthonormal basis), at each point. To this variable basis
is thus associated an affine connection. This also allows us to use Cartan’s
(D0,D1,D2,D3) mobile basis. These vectors are calculated in A.4.2. We
recall that we have:

ρeiβ = ϕϕ = det(ϕ); ρe−iβ = ϕ̂ϕ̃, (4.15)
Dµ ·Dν = 0, µ ̸= ν, (4.16)

ρ2 = D0 ·D0 = −D1 ·D1 = −D2 ·D2 = −D3 ·D3. (4.17)

This connection was first studied in [22]. We let:

∂∂∂ν =
∂

∂Xν
= Dµ

ν∂µ; dx = dXνDν , (4.18)

dDµ = Γβ
µνdX

νDβ .

1. The fixedness of the σµ comes from the fact that the four matrices (1± σ3)/2 and
(σ1±iσ2)/2 constitute the canonical basis of M2(C) and are thus intrinsic in the GL(2,C)
group.
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If ρ ̸= 0 this gives:

dx = dxµσµ = Dµ
νσµdX

ν = DνdX
ν ,

Dν = ϕσνϕ
† = Dµ

νσµ ; σµ = (D−1)βµDβ . (4.19)

Now we use the similitude D such that

D(x) = ϕxϕ̂. (4.20)

We have

D ◦D(x) = D[D(x)] = ϕϕxϕ̂ϕ† = ρeiβxρe−iβ = ρ2x,

D ◦ (ρ−2D)(x) = x,

D−1(x) = ρ−2D(x). (4.21)

And we get:

dDµ = ∂ν(Dµ)dX
ν = ∂ν(D

ξ
µσξ)dX

ν = ∂ν(D
ξ
µ)σξdX

ν

= ∂ν(D
ξ
µ)(D

−1)βξDβdX
ν = Γβ

µνDβdX
ν . (4.22)

Therefore the connection coefficients are

Γβ
µν = ∂ν(D

ξ
µ)(D

−1)βξ ; ∂ν = Dτ
ν∂τ . (4.23)

By using the D similitude we get

Γβ
µν = ρ−2∂ν(D

ξ
µ)D

β

ξ ; ∂ν = Dτ
ν∂τ . (4.24)

Since D
0

0 = D0
0 and D

0

j = −Dj
0 we have:

Γ0
0ν = Γ1

1ν = Γ2
2ν = Γ3

3ν = ∂ν [ln(ρ)] = Dµ
ν∂µ[ln(ρ)]. (4.25)

Since D
j

0 = −D0
j and D

k

j = Dj
k we have:

Γj
0ν = Γ0

jν , j = 1, 2, 3, (4.26)

Γj
kν = −Γk

jν , j = 1, 2, 3 , k = 1, 2, 3, k ̸= j. (4.27)

A complete calculation of the connection needs the following quantities:

Sk = ϕσkϕ, (4.28)

S(k) + iS ′
(k) =

∇S†
k

det(ϕ)†
, (4.29)

A(k) + iA′
(k) =

AS†
k

det(ϕ)†
, (4.30)

τ =
1

2
[(∇ϕ̂)ϕ† − σµϕ̂∂µϕ

†], (4.31)

T + iT ′ =
τ

det(ϕ)†
. (4.32)
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The tensor τ is Durand’s spin density [16, 51]. Using our improved wave
equation of the electron, we obtain in D.4 :

Γ0
1µ = Dµ · [S(1) − 2qA(2)] + 2mρδ2µ, (4.33)

Γ0
2µ = Dµ · [S(2) + 2qA(1)]− 2mρδ1µ, (4.34)

Γ0
3µ = Dµ · S(3), (4.35)

Γ2
3µ = −Dµ · [S ′

(1) + 2qA′
(2)]− 2dρδ1µ, (4.36)

Γ3
1µ = −Dµ · [S ′

(2) + 2qA′
(1)] + 2dρδ2µ, (4.37)

Γ1
2µ = −Dµ · [S ′

(3) + 2qA]− 2mρδ0µ + 2dρδ3µ, (4.38)

Γ0
0µ = Dµ · [−2T + 2qA′

(3)], (4.39)

where δ00 = 1, δjj = −1, j = 1, 2, 3 and δνµ = 0, µ ̸= ν. The particular role
of the index 3 in the Dirac equation of the electron is still very visible in
these relations. For the second or the third generation it is enough to make
a circular permutation of indices. So a particular index, 1 or 2, is thus also
visible. The connection is not torsion-free, and the proper mass is linked to
this torsion: this is the reason to think of this connection as yielding grav-
itation. Moreover, the mass term mρ, and thus also Christoffel’s symbols,
have the physical dimension L−1 of a radius of curvature. We may thus con-
sider that the link between mass-energy and geometry is not made
with the curvature tensor, but directly with the affine connection
and the torsion of the space-time manifold. This is a generalization
of Einstein’s attempt at a space-time manifold without curvature and with
torsion to account for both gravitation and electromagnetism [65].

With the plane wave we obtained in 1.5.3:

ϕ = ϕ0e
−φσ12 ; φ = mgvµx

µ ; v = σµvµ, mg =
√
lr. (4.40)

where the reduced velocity v and ϕ0 are fixed terms. We obtain:

ϕ = σµ∂µ(ϕ̂0e
−φσ12) = −mgvϕ̂σ12. (4.41)

This gives

ϕ = eiβvϕ̂
m̂

mg
, (4.42)

which implies that

ϕ = eiβv
(
e−iβ v̂ϕ

m

mg

) m̂

mg
= vv̂ϕ. (4.43)

Therefore if ϕ0 is invertible we must take

1 = vv̂ = v · v = v20 − v⃗ 2, (4.44)

v20 = 1 + v⃗ 2 ; v0 = ±
√
1 + v⃗ 2. (4.45)
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which is the relativistic relation for the velocity of the particle. We also get:

ρeiβ = det(ϕ) = det(ϕ0) det(e
iβ) = det(ϕ0). (4.46)

Therefore ρ and β are fixed. It is the same for

D0 = ϕ0ϕ
†
0 ; D3 = ϕ0σ3ϕ

†
0. (4.47)

D1 and D2, on the contrary, are variable. We let

d1 = ϕ0σ1ϕ
†
0 ; d2 = ϕ0σ2ϕ

†
0, (4.48)

which gives:

D1 = cos(2φ)d1 + sin(2φ)d2,

D2 = − sin(2φ)d1 + cos(2φ)d2. (4.49)

As D0 and D3 are fixed we get:

∂∂∂ν(D
ξ
0) = ∂∂∂ν(D

ξ
3) = 0 (4.50)

Γβ
0ν = Γβ

3ν = 0. (4.51)

With D1 and D2 we obtain:

∂τ (D
ξ
1) = ∂τ [cos(2φ)d

ξ
1 + sin(2φ)dξ2] = 2mgvτD

ξ
2,

∂τ (D
ξ
2) = ∂τ [− sin(2φ)dξ1 + cos(2φ)dξ2] = −2mgvτD

ξ
1,

∂∂∂ν(D
ξ
1) = Dτ

ν∂τ (D
ξ
1) = 2mgD

τ
νvτD

ξ
2 = 2mg(Dν · v)Dξ

2, (4.52)

∂∂∂ν(D
ξ
2) = Dτ

ν∂τ (D
ξ
2) = −2m− gDτ

νvτD
ξ
1 = −2mg(Dν · v)Dξ

1. (4.53)

Next we get:

Dν · v =
1

ρ
Dν ·D0 = ρδ0ν . (4.54)

Therefore we have:

Γβ
11 = Γβ

12 = Γβ
13 = Γβ

21 = Γβ
22 = Γβ

23 = 0. (4.55)

And we get:

Γβ
10 =

2mg

ρ
Dξ

2D
β

ξ ; Γβ
20 = −2mg

ρ
Dξ

1D
β

ξ , (4.56)

which gives:

Γ2
10 =

2mg

ρ
Dξ

2D
2

ξ =
2mg

ρ
(D0

2D
2

0 +D1
2D

2

1 +D2
2D

2

2 +D3
2D

2

3)

=
2mg

ρ
(−D0

2D
0
2 +D1

2D
1
2 +D2

2D
2
2 +D3

2D
3
2)

=
2mg

ρ
(−D2 ·D2) = 2mgρ. (4.57)
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We also have:

Γ0
10 =

2mg

ρ
(D2 ·D0) = 0,

Γ3
10 =

2mg

ρ
(−D2 ·D3) = 0,

Γ1
10 =

2mg

ρ
(−D2 ·D1) = 0. (4.58)

Similarly for the Γβ
20 we get

Γ1
20 = −2mgρ ; Γ0

20 = Γ2
20 = Γ3

20 = 0. (4.59)

To resume, among the 64 Γβ
µν terms, 62 terms are zero. Two terms are not

zero:
Γ2
10 = −Γ1

20 = 2mgρ. (4.60)

Therefore the torsion has two fixed components:

1

2
(Γ2

10 − Γ2
01) = mgρ, (4.61)

1

2
(Γ1

20 − Γ1
02) = −mgρ. (4.62)

As the nonvanishing Γβ
µν terms are fixed, the curvature tensor cancels out.

We thus see that, for the improved equation, the manifold linked to a plane
wave is without curvature but with a fixed torsion, and the mass term is
proportional to this torsion.

4.1.2 Inertia from the invariance group
We now have four kinds of spinors which vary in four different transfor-

mations: the Cl∗3 = GL(2,C) group has four kinds of representations. So
in addition to the invariance of what do not change such as the Lagrangian
density, we get no less than six kinds of variance: the contravariance of
vectors transforming like x, the covariance of vectors transforming like ∇,
and four kinds of spinors that we encountered in previous chapters:

x′ =MxM†; ∇ =M∇′M̂ =MσµM̂∂′µ, (4.63)

R′n =MRn; L̂′n = M̂L̂n, n = 1, 2, 3, 4, (4.64)

R′4+n = R4+nM̃ ; L̂′4+n = L̂4+nM, n = 1, 2, 3, 4. (4.65)

Differential geometry studies what happens in the neighborhood of a given
point-event. This is equivalent to considering in the neighborhood of x a
dilator M which differs from unity only by an infinitesimal. We thus let:

M = 1+dxµ(a0µ+a
1
µσ1+a

2
µσ2+a

3
µσ3+a

4
µiσ1+a

5
µiσ2+a

6
µiσ3+a

7
µi), (4.66)
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where the anµ, for µ = 1, 2, 3, 4 and n = 0, 1, . . . , 7 are 32 smooth enough
real functions of x, and dxµ are increments of x at this point-event in the
relevant local basis. This gives:

M† = 1 + dxµ(a0µ + a1µσ1 + a2µσ2 + a3µσ3 − a4µiσ1 − a5µiσ2 − a6µiσ3 − a7µi),

M̂ = 1 + dxµ(a0µ − a1µσ1 − a2µσ2 − a3µσ3 + a4µiσ1 + a5µiσ2 + a6µiσ3 − a7µi),

M = 1 + dxµ(a0µ − a1µσ1 − a2µσ2 − a3µσ3 − a4µiσ1 − a5µiσ2 − a6µiσ3 + a7µi).

(4.67)

We also have:

MM = det(M) = 1 + 2dxµ(a0µ + ia7µ), (4.68)

det(M−1) = 1− 2dxµ(a0µ + ia7µ), (4.69)

M
−1

=M det(M−1), (4.70)

= 1 + dxµ(−a0µ + a1µσ1 + a2µσ2 + a3µσ3 + a4µiσ1 + a5µiσ2 + a6µiσ3 − a7µi),

M̂−1 = (M
−1

)† (4.71)

= 1 + dxµ(−a0µ + a1µσ1 + a2µσ2 + a3µσ3 − a4µiσ1 − a5µiσ2 − a6µiσ3 + a7µi).

The similitude R defined by M which changes x into x′, such that x′ =
R(x) + a = MxM† + a, where a is the vector a = aµσµ of a translation,
gives the following:

x′
0
= x0 + dx0 + 2(a0µx

0 + a1µx
1 + a2µx

2 + a3µx
3)dxµ, (4.72)

x′
1
= x1 + dx1 + 2(a1µx

0 + a0µx
1 + a6µx

2 − a5µx
3)dxµ, (4.73)

x′
2
= x2 + dx2 + 2(a2µx

0 − a6µx
1 + a0µx

2 + a4µx
3)dxµ, (4.74)

x′
3
= x3 + dx3 + 2(a3µx

0 + a5µx
1 − a4µx

2 + a0µx
3)dxµ. (4.75)

Since Christoffel symbols Γα
βγ are defined as

x′α = xα + dxα + Γα
βγx

βdxγ , (4.76)

we thus have:

Γ0
0µ = Γ1

1µ = Γ2
2µ = Γ3

3µ = 2a0µ, (4.77)

Γ1
0µ = Γ0

1µ = 2a1µ ; Γ2
0µ = Γ0

2µ = 2a2µ ; Γ3
0µ = Γ0

3µ = 2a3µ, (4.78)

Γ2
3µ = −Γ3

2µ = 2a4µ ; Γ3
1µ = −Γ1

3µ = 2a5µ ; Γ1
2µ = −Γ2

1µ = 2a6µ. (4.79)

First remark, the connection of Γα
βγ symbols depends only on 28 of the 32

real functions contained in the dilator M in (4.66). The four a7µ are neces-
sarily absent in the connection, because they are factors of the i generator
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of the chiral gauge [22][24]. Differential geometry cannot perceive these a7µ!
Einstein thought that something was lacking in the physical theory for the
integration of quantum physics into classical physics. The four parameters
that are lacking in the geometric part of the connection are not lacking
in the spinor part of differential geometry. Thus something was actually
lacking, only not where it was expected. 2

Second remark, the equalities (4.77) to (4.79) are identical to the equal-
ities between Γα

βµ in (4.26) and (4.27). The identity between these two
connections is also another way 3 to identify inertia with gravitation, with
the 64 equalities:

Γα
βµ = Γα

βµ. (4.80)

There are actually only 7 = 28/4 independent equations:

2a1µ = Γ0
1µ = Dµ · [S(1) − 2qA(2)] + 2mgρδ

2
µ, (4.81)

2a2µ = Γ0
2µ = Dµ · [S(2) + 2qA(1)]− 2mgρδ

1
µ, (4.82)

2a3µ = Γ0
3µ = Dµ · S(3), (4.83)

2a4µ = Γ2
3µ = −Dµ · [S ′

(1) − 2qA′
(2)], (4.84)

2a5µ = Γ3
1µ = −Dµ · [S ′

(2) + 2qA′
(1)], (4.85)

2a6µ = Γ1
2µ = −Dµ · [S ′

(3) + 2qA]− 2mgρδ
0
µ, (4.86)

2a0µ = Γ0
0µ = Dµ · [−2T + 2qA′

(3)]. (4.87)

We again see clearly seven an, n = 0, 1, . . . , 6 vectors, with a7 lacking.
These vectors will be called inertial potentials. These 7 equations may be
considered the gravitational field equations.

Vectors transforming like (4.76) are called contravariant. On the other
hand, covariant vectors transform like ∇ :

∇ = σµ∂µ =MσµM̂∂′µ, (4.88)

with always the same σµ. These relations, demonstrated in A.4.4, do not
place the ∂′µ operators behind M̂ but before, because M is taken to be
constant. Nevertheless for a variable M , it is (4.88) that is proved in A.4.4,
because the proof only uses algebraic properties of partial derivatives. This

2. This number, 28 = 8×7/2, is also the dimension of the SO(8) group of the rotations
in Cl3. 36 = 64− 28 = 8× 9/2 is the number of densities that can be constructed from
the electron wave [17].

3. We are accustomed to the formulation of general relativity as the equality between
the Ricci tensor and the energy–momentum tensor of the other forces. But Einstein also
studied a theory of the space-time manifold with torsion [106] that was very close to our
approach, which is necessary if we begin with the Standard Model, and also necessary if
we want that both inertia and gravitation may be defined from the unitary field that is
for us the quantum wave. Since the equivalence principle identifies two connections, the
tensors of torsion and curvature are also unified.
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gives:

∇ϕ̂ = σµ∂µϕ̂ =MσµM̂∂′µϕ̂

=Mσµ[∂′µ(M̂ϕ̂)− (∂′µM̂)ϕ̂]. (4.89)

And we have:

(∂′µM̂)M̂−1 + M̂(∂′µM̂
−1) = ∂′µ(M̂M̂−1) = ∂′µ(1) = 0,

∂′µM̂ = −M̂(∂′µM̂
−1)M̂. (4.90)

If we define the derivative D as

ϕDϕ̂ = ϕ[∇− 1

2
(∇M̂−1)M̂ ]ϕ̂, (4.91)

we necessarily have

ϕ
′
D′ϕ̂′ = ϕ

′[∇′ − 1

2
(∇′M̂ ′−1)M̂ ′

]
ϕ̂′, (4.92)

M ′ =M−1, (4.93)

ϕ
′
D′ϕ̂′ = ϕ

′[∇′ − 1

2
(∇′M̂)M̂−1

]
ϕ̂′. (4.94)

We therefore get:

ϕ
′
(D′ϕ̂′) = ϕ

′[∇′ − 1

2
(∇′M̂)M̂−1

]
ϕ̂′ = ϕMσµ

[
∂′µ(M̂ϕ̂)− 1

2
(∂′µM̂)ϕ̂

]
= ϕMσµ

[
(∂′µM̂)ϕ̂+ M̂(∂′µϕ̂)−

1

2
(∂′µM̂)ϕ̂

]
(4.95)

= ϕMσµ
[
M̂∂′µϕ̂+

1

2
(∂′µM̂)ϕ̂

]
= ϕ(MσµM̂∂′µϕ̂)−

1

2
ϕ(MσµM̂∂′µM̂

−1)M̂ϕ̂

= ϕ[∇− 1

2
(∇M̂−1)M̂ ]ϕ̂ = ϕ(Dϕ̂).

We may then say that D is form-invariant. In a shortened form we name
D the invariant derivative. Using the reversion and theM 7→ M̂ conjugation
we have:

D̂ϕ = [∇̂ − 1

2
(∇̂M−1)M ]ϕ, (4.96)

ϕD̃ = (ϕ∇)− 1

2
ϕM(M

−1∇), (4.97)

ϕ̃D = (ϕ̃∇̂)− 1

2
ϕ̃M̃(M̃−1∇̂). (4.98)

The quantum wave in a non-null gravitational field follows exactly
the same invariant wave equations as in a null field. The only
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difference: the differential operator ∇ is replaced by the invariant
D. This uses the eight space-time vectors an in (4.66):

an = σµanµ, (4.99)

Dϕ̂ =
[
∇− 1

2
(∇M̂−1)M̂

]
ϕ̂ (4.100)

=
[
∇− 1

2
(a0 − a1σ1 − a2σ2 − a3σ3 + a4iσ1 + a5iσ2 + a6iσ3 − a7i)

]
ϕ̂.

Here we must consider all 32 functions, including the four that are not
implied in the calculation of the tensors of general relativity.

Under a similitude that comes from a fixed dilator N such that:

x = NxN†; ∇ = N∇N̂ , (4.101)

we must have with the covariance of ∇ and of the gauge terms:

D = NDN̂ ; ∇M̂−1 = N∇(M̂N̂−1)−1. (4.102)

Thus with
M =MN−1; M̂ = M̂N̂−1; M̂ = M̂N̂ , (4.103)

we have:

(∇M̂−1)M̂ = N(∇ M̂
−1

)M̂ = N(∇ M̂
−1

) M̂N̂ , (4.104)

D = N∇N̂ − 1

2
[N(∇ M̂

−1
)M̂N̂ ] = NDN̂ , (4.105)

D = ∇− 1

2
(∇ M̂

−1
)M̂. (4.106)

We also recall that with any M transforming x into x′ = MxM† we have
ϕ′ =Mϕ, and with the X of the invariant space-time in (1.279):

x′ =MxM† =M(ϕXϕ†)M† = (Mϕ)X(Mϕ)† = ϕ′Xϕ′†. (4.107)

Thus the general element X is independent of ϕ, and thus the set of X may
still be called the invariant space-time.

4.2 Invariant wave equations
In the invariant derivative there are two terms containing i: b and a7,

because this i which governs the orientation of space commutes with any
element of the Cl3 algebra (reason: ordinary space has an odd number of
dimensions). Thus we have no reason to distinguish a gauge transformation
acting by multiplication on the right side, from a transformation acting by
multiplication on the left side. We must therefore identify these two trans-
formations with each other and use a single gauge potential. We suppose:

0 = a7 + b (4.108)
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This unification makes use of the incorporation of charges into potentials
advocated by Socroun [102]. We may also say: when these constants are
integrated into potentials, gravitation is completely at equality with gauge
forces. We will obtain wave equations in curved space or with gravitation
(it is the same thing) via replacing partial derivatives by derivatives com-
pleted with gauge potentials and connection terms. Since the wave equa-
tions studied in previous chapters may be considered as approximations of
the complete equations when the gravitational field is negligible, we must
obtain these equations simply by suppressing an, n = 0, 1, . . . , 6 which are
connection terms. For the lepton wave (2.143) and (2.144) become:

0 =
[
∇− a0

2
+
(aj
2

− i
a3+j

2

)
σj + i(b + 3w3 + lv)

]
L̂1, (4.109)

0 =
[
∇̂ − â0

2
+
( âj
2

+ i
â3+j

2

)
σ̂j − i(2b̂ + rv̂)

]
R1, (4.110)

0 =
[
∇− a0

2
+ σj

(aj
2

+ i
a3+j

2

)
+ i(b− 3w3 +m1v)

]
L
8
, (4.111)

0 =
[
∇̂ − â0

2
+ σ̂j

( âj
2

− i
â3+j

2

)
− i(2pb̂ +m2v̂)

]
R̃8. (4.112)

Hence this comes from:

0 =
[
∇− a0

2
− i

b

2
+
(aj
2

− i
a3+j

2

)
σj + i

(3
2
b + 3w3 + lv

)]
L̂1, (4.113)

0 =
[
∇̂ − â0

2
+ i

b̂

2
+
( âj
2

+ i
â3+j

2

)
σ̂j − i

(5
2
b̂ + rv̂

)]
R1, (4.114)

0 =
[
∇− a0

2
+ i

b

2
+ σj

(aj
2

+ i
a3+j

2

)
+ i
(1
2
b− 3w3 +m1v

)]
L
8
, (4.115)

0 =
[
∇̂ − â0

2
− i

b̂

2
+ σ̂j(

âj

2
− i

â3+j

2
)− i(

4p− 1

2
b̂ +m2v̂

)]
R̃8. (4.116)

For the wave equation of quarks we obtain the following in place of (3.128)
to (3.132) and for n = 2, 3, 4:

0 =
[
∇− a0

2
+
(aj
2

− i
a3+j

2

)
σj

+ i
(
− b

3
+ 3w3

n − 3hd3Ln+1 + 3hd3Ln−1 + q1vq

)]
L̂n,

0 =
[
∇̂ − â0

2
+
( âj
2

+ i
â3+j

2

)
σ̂j

+ i
(2b̂
3

+ 3ĥd3Rn+1 − 3ĥd3Rn−1 + q2v̂q

)]
Rn, (4.117)
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0 =
[
∇− a0

2
+ σj

(aj
2

+ i
a3+j

2

)
+ i
(
− b

3
− 3w3

n − 3hu3Ln+1 + 3hu3Ln−1 + q3vq

)]
L
3+n

, (4.118)

0 =
[
∇̂ − â0

2
+ σ̂j

( âj
2

− i
â3+j

2

)
+ i
(
− 4b̂

3
+ 3ĥu3Rn+1 − 3ĥu3Ln−1 + q4v̂q

)]
R̃3+n.

This is equivalent to:

D := ∇− a0

2
− i

b

2
+

1

2

3∑
j=1

(aj − ia3+j)σj , (4.119)

0 =
[
D+ i

(b
6
+ 3w3

n − 3hd3Ln+1 + 3hd3Ln−1 + q1vq

)]
L̂n, (4.120)

0 =
[
D̂+ i

( b̂
6
+ 3ĥd3Rn+1 − 3ĥd3Rn−1 + q2v̂q

)]
Rn, (4.121)

0 =
[
D̃+ i

(
− 5b

6
− 3w3

n − 3hu3Ln+1 + 3hu3Ln−1 + q3vq

)]
L
3+n

, (4.122)

0 =
[
D+ i

(
− 5b̂

6
+ 3ĥu3Rn+1 − 3ĥu3Ln−1 + q4v̂q

)]
R̃3+n. (4.123)

We can notice some similarities and differences in comparison with the lep-
ton wave equations: terms coming from inertial potentials are the same,
and gravitation works in the same manner on any material wave: gravi-
tation is universal. The quark sector has more gauge terms: this comes
from the fact that chromodynamics acts only on quarks, as leptons are not
sensitive to strong interactions. The quark sector seems more simple
and more regular than the lepton sector: mass terms all have the
same sign whereas signs are different for right or left waves in the lepton
case. The gauge terms of the U(1) group are also more simplified by the
invariant differential term linked to gravitation: in the quark sector, only
two coefficients remain as factors of the chiral potential b: 1/6 and −5/6.

4.2.1 Quantization of charges

The Standard Model employs renormalization prior to comparison be-
tween theoretical calculations and experimental values. In the case of weak
interactions the success of this process requires the cancellation of “anoma-
lies” related to chirality. This cancellation comes from the fact that the
sum of all the different charges of particles in each generation is zero. Since
these charges come from weak charges we will obtain this suppression of
anomalies by imposing, as it is done in the Standard Model, that the sum
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of all coefficients of the gauge potential b is null:

0 =
3

2
+

−5

2
+

1

2
− 4p− 1

2
+ 3
(1
6
+

1

6
+

−5

6
+

−5

6

)
= −2p− 4

p = −2. (4.124)

We remark that (4.124) should imply, in the absence of quarks, that the
sum is null only if p = 0, which means only in the case without magnetic
monopoles. Thus the magnetic monopole exists only because quarks
exist. We now have in the lepton sector:

0 =
[
D+ i

(3
2
b + 3w3 + lv

)]
L̂1, (4.125)

0 =
[
D+ i

(5
2
b + rv

)]
R̂1, (4.126)

0 =
[
D̃+ i

(1
2
b− 3w3 +m1v

)]
L
8
, (4.127)

0 =
[
D̃+ i

(
− 9

2
b +m2v

)]
R

8
. (4.128)

The sum of coefficients of the chiral potential is:

3

2
+

5

2
+

1

2
+

−9

2
= 0. (4.129)

Then (4.124) and (4.129) imply the value e/3 for the sum of charges of the
u and d quarks, and thus only with the choice of the coefficient −1/3 in the
definition of P0, which implies that the choice made there is not arbitrary,
but constrained by its consequence. We may also remark in (4.120) to
(4.123) that the coefficients of the potential b are the same for both left and
right waves of each quark. This is also a consequence of the choice −1/3 in
the operator P0.

From the interaction between electron and magnetic monopole Dirac
found a formula relating electric charges e and magnetic charges g to the
Planck constant:

eg

ℏc
=

1

2
, (4.130)

We also have:

e

2
=
e2g

ℏc
= αg; g =

e

2α
, (4.131)

where α is the fine structure constant. This formula, the only equality ex-
plaining the quantification of charges, has been obtained via many ways
[67][86]. The smartest, from the point of view of quantum physics, was
Lochak’s. He used the property that, with an 1/r electric potential, a sup-
plementary symmetry exists aside from rotation invariance, which trans-
forms this invariance into SO(4) invariance. The continuity of the magnetic
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monopole wave under the SO(4) group then allowed Lochak to obtain the
formula (4.130) [84] [85] [86].

The various ways [67] of obtaining the Dirac formula, including Lochak’s,
are all based on the same presupposition: they suppose that an electric
central charge acts by a potential like B on a magnetic monopole, or that
a magnetic central charge acts by a potential like A on an electric charge.
The problem is: potential terms are not pure tools for calculation, they
are embedded in the quantum field. And Maxwell’s laws indicate clearly
that an electric current creates an electric potential, not a magnetic one,
and conversely. There could not be any interaction between electric and
magnetic charge if an electric charge was not able to create a magnetic
potential or if a magnetic charge was not able to create an A potential.
Moreover only the potentials are present in the wave equations, fields are
not. A magnetic monopole acts only by the potential B issued of its kind of
gauge invariance. And since it does not have an electric charge, he cannot
act via the potential A created by electric charges. The problem is solved
because we have at hand the Weinberg–Salam angle which rotates in the
complex plane (A,Z0) of (2.205) : A + iZ0 = e−iθW (B + iW ). It results
that a potential A0 = e/r created by an electric charge e satisfies:

B0 = cos(θW )A0 =

√
3e

2r
=
e′

r
; e′ =

√
3

2
e. (4.132)

Thus we obtain instead the Dirac relation

1

2
=
e′g

ℏc
;

1√
3
=
eg

ℏc
;

e√
3
=
e2g

ℏc
= αg, (4.133)

where α is the fine structure constant. By squaring we get:

e2

3
= α2g2 =

e2

3ℏc
ℏc =

α

3
ℏc; |g| =

√
ℏc
3α

; |e| =
√
αℏc. (4.134)

4.3 Double link with the Lagrangian density
To be able to obtain the same properties as in flat space-time, it is

necessary to replace everywhere the partial derivatives used in the first
chapters by new derivatives accounting for the covariance, or contravariance,
or invariance of the objects on which the partial derivatives act. Similarly
the form invariance of the wave equations needs the replacement of the ∇
operator by the invariant D in (4.119), with:

X0 = a00 + a11 + a22 + a33; Y0 = a41 + a52 + a63,

X1 = a10 + a01 + a53 − a62; Y1 = a40 + a32 − a23,

X2 = a20 + a02 + a61 − a43; Y2 = a50 + a13 − a31, (4.135)

X2 = a30 + a03 + a42 − a51; Y3 = a60 + a21 − a12.
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For the left wave L1 = ϕ(1− σ3)/2 and the right wave R1 = ϕ(1 + σ3)/2 of
the electron, the form-invariant equation (1.147) becomes :

0 = L
1
(DL̂1)σ21 + L

1
(3b
2

+ 3w3 + lv
)
L̂1, (4.136)

0 = R
1
(DR̂1)σ21 +R

1
(5b
2

+ rv
)
R̂1, (4.137)

These equations read:

0 = [−iη1†(∇+X + iY )η1 + η1†(b + 3w3 + lv)η1](σ1 − iσ2), (4.138)

0 = [iξ̂1†(∇+X + iY )ξ̂1 + ξ̂1†(2b + rv)ξ̂1](σ1 + iσ2). (4.139)

They are equivalent, if X = 0, to:

0 = −iη1†(∇η1) + η1†(Y + b + 3w3 + lv)η1, (4.140)

0 = iξ̂1†(∇ξ̂1) + ξ̂1†(−Y + 2b + rv)ξ̂1. (4.141)

These equations obviously come from the wave equations with the form:

0 = −i∇η1 + (Y + b + 3w3 + lv)η1, (4.142)

0 = i∇ξ̂1 + (−Y + 2b + rv)ξ̂1. (4.143)

On the contrary, if X ̸= 0, these equations with the usual form do not come
from equations with the invariant form (4.140) and (4.141), via the Lagrange
equations: if we indeed consider second sides of the invariant equations as
Lagrangian densities, these densities are no longer with real value, but with
complex value; this comes from D† ̸= D. Henceforth with X = 0 and:

l1 := σµ(Yµ + bµ + 3w3
µ + lvµ), (4.144)

the left wave equation of the electron reads:

0 = (−i∇+ l1)η1. (4.145)

Using the adjoint, we obtain:

0 = i(∇η1)† + η1†l1. (4.146)

If X is zero we are back in the case of the Lagrangian formalism studied in
Chapter 2. Conserving the definition of the Lagrangian density, we have:

0 = L1
L = −iη1†(∇η1) + l1µD

1µ
L , (4.147)

with a Lagrangian density which is complex, not only real. The real part,
which is the Lagrangian density as before, satisfies:

2ℜ(L1) = −iη1†σµ(∂µη
1) + i(∂µη

1†)σµη1 + 2l1µD
1µ
L . (4.148)



172 CHAPTER 4. GRAVITATION

The double logical link between wave equations and the real Lagrangian
density remains, because the Xµ terms are missing in the real Lagrangian
density and the wave equation that is obtained by the use of the Lagrange
equations, from the real Lagrangian density, is a complete invariant wave
equation. The change from the flat space-time only comes from the imagi-
nary part iX, the left current D1

L is conserved.
Fifteen similar equations exist, for the fifteen other chiral spinors of the

Standard Model. From one equation to the other the Xµ + iYµ terms are
constant (universality of gravitation), and the ηn, ∇, σµ and Dnµ

L must be
replaced by some ξn, ∇̂, σ̂µ, D̂nµ

R when left waves are replaced by right
waves. After this change the double logical link between wave equation
and Lagrangian density is conserved, as soon as Xµ are zero. Lagrange’s
equations allow us, as previously, to go from Lagrangian density to wave
equation in ordinary form, while the multiplication on the left side by ηn

or ξ
n

allows us to obtain the wave equations in the completely invariant
form. The Lagrangian mechanism thus remains a purely algebraic process
and acts with any gravitational field such that Xµ = 0.

With the seven other left waves it is enough to replace the l1 vector by
the appropriate ln vector:

l8 = Y + b− 3w3 +mlv, (4.149)

ln = Y − b

3
+ 3w3

n − 3hd3Ln+1 + 3hd3Ln−1 +m1vq, (4.150)

l3+n = Y − b

3
− 3w3

n − 3hu3Ln+1 + 3hu3Ln−1 +m3vq, (4.151)

for n = 2, 3, 4. We thus obtain:

0 = −iηn†(∇ηn) + i(∇ηn)†ηn + 2lnµD
nµ
L , (4.152)

0 = −i∂µDnµ
L , (4.153)

0 = ∇ηn + ilnηn, n = 1, 2, . . . , 8. (4.154)

Next, for the right waves we simply replace L̂n with Rn, L
4+n

with R̃4+n

for n = 1, 2, 3, 4, and ηn with ξn for n = 1, . . . , 8, and more we have a sign
change of Y. And we use the parity conjugation P : M 7→ M̂ , which is the
main automorphism in Cl3. We now let, for n = 2, 3, 4 :

r1 = −Y + 2b + rv; r8 = −Y − 4b +mrv, (4.155)

rn = −Y +
2

3
b + 3hd3Rn+1 − 3hd3Rn−1 +m2vq, (4.156)

r3+n = −Y − 4

3
b + 3hu3Rn+1 − 3hu3Rn−1 +m4vq. (4.157)
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And we obtain:

0 = −iξn†(∇̂ξn) + i(∇̂ξn)†ξn + 2rnµD
nµ
R , (4.158)

0 = −i∂µDnµ
R , (4.159)

0 = ∇̂ξn + ir̂nξn, n = 1, . . . , 8. (4.160)

We see a total likeness between the left wave equations and those of right
waves. They differ only by gauge terms, and the replacement of σµ with σ̂µ,
and by an unexpected sign change for Y . The Lagrangian density relative
to L1 conserves exactly the form used in (2.161). Lagrange’s equations thus
show how the (2.165) and (2.166) equations are equivalent to the equation
(2.167) of L1. To the very old question: why does a Lagrangian mechanism
exist? Does such an “extremal principle” exist, above physical laws? The
answer is no, because what happens is very simple: since ϕ = R1 + L1 is
invertible, 4 and if the Xµ are zero, the wave equation of L1 in the usual
form (2.169) is equivalent to the invariant form of the wave equation of L1,
where the real Cliffordian part satisfies the equation 0 = L1. The usual
form (2.169) of the wave equation is equivalent to the four real numerical
equations (2.164) and following, which are exactly the Lagrange equations
relative to the four real variables in L1. This is possible for each spinor wave
Ln and Rn. Consequently the Lagrangian mechanism is the automatic way
to go from the Lagrangian equation to each wave equation in the usual
form. This works without any supplementary justification coming from
an integration by parts and the cancellation of terms at the boundary of
the domain of integration. It is the simple consequence of the Clifford
algebra structure, a purely algebraic property which depends only on the
dimension and the signature of the space-time metric, and thus on the space-
time geometry. The space-time manifold inherits the Lagrangian mechanism
for the electron (but only in the X = 0 case) from the special relativity
framework, because each tangent space-time to the space-time manifold, at
any point-event, has same dimension and same signature as the space-time
of special relativity.

4.4 Energy–momentum and kinetic momentum
Conservation properties of energy–momentum and of kinetic momentum

come from the invariance of the Lagrangian density under the additive trans-
lations group and under the multiplicative Cl∗3 group generalizing SU(2).

4. The existence of the inverse is not general since the wave has value in a ring, which
has zero divisors, not in a field. But the invertibility property is satisfied in any point for
all calculated solutions of the improved wave equation. This property is strong, because
the determinant of ϕ(x) is a modulus of complex number; its square is the sum of two
squares, which is zero only if each of the two terms (the invariant Ω1 and the invariant
Ω2) is zero. Moreover, the determinant being a continuous function, if it is nonzero at
one point, it is necessarily nonzero in the neighborhood of this point.
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Wave equations being form-invariant under both kinds of transformations,
we have only a few things to change in comparison with previous chapters.
In the case of the leptonic wave the T and V tensors remain defined by
(2.218) and (2.219). The change is the replacement of the covariant deriva-
tives. We thus have:

Tµ
λ =

m

kl
T 1µ
Lλ +

m

kr
T 1µ
Rλ +

m

kml
T 8µ
Lλ +

pm

kmr
T 8µ
Rλ, (4.161)

V µ
λ =

m

kl
T 1µ
Lλ − m

kr
T 1µ
Rλ +

m

kml
T 8µ
Lλ − pm

kmr
T 8µ
Rλ. (4.162)

The energy–momentum T is hence always the sum of four terms, one for
each spinor of the leptonic wave (and the sum of twelve terms in the case
of the quarks). It is enough to calculate one term and to transpose the
procedure to the others. We calculate the left term of the electron, and the
invariance of the Lagrangian density under translations implies:

L1
L = ℜ[−iη1†σµ(∂µη

1 + il1µη
1)], (4.163)

T 1µ
Lλ = ℜ[−iη1†σµ(∂λη

1 + il1λη
1)] + δµλL

1
L

= ℜ[−iη1†σµ(∂λη
1 + il1λη

1)]. (4.164)

We thus have:

−iη1†(∇η1) = −iη1†(−il1η1) = −η1†l1µσµη1 = −l1µD
1µ
L , (4.165)

2T 1µ
Lλ = −iη1†σµ∂λη

1 + i(∂λη
1†)σµη1 + 2l1λD

1µ
L . (4.166)

Next we use the wave equation of η1, which gives:

∇η1 = −il1η1; ∂µD1µ
L = −XµD

1µ
L , (4.167)

2∂µT
1µ
Lλ = −i(∇η1)†∂λη1 − iη1†∂λ(∇η1)

+ i∂λ(∇η1)†η1 + i(∂λη
1†)∇η1 + (∂µl

1
λ)D

1µ
L (4.168)

We thus obtain:

∂µT
1µ
Lλ = (∂µl

1
λ − ∂λl

1
µ)D

1µ
L , (4.169)

∂µT
1µ
L = [(∂µl

1
λ − ∂λl

1
µ)D

1µ
L ]σλ. (4.170)

Similarly, we obtain for the other parts of the lepton wave:

∂µT
1µ
R = [(∂µr

1
λ − ∂λr

1
µ)D

1µ
R ]σλ, (4.171)

∂µT
8µ
L = [(∂µl

8
λ − ∂λl

8
µ)D

8µ
L ]σλ, (4.172)

∂µT
8µ
R = [(∂µr

8
λ − ∂λr

8
µ)D

8µ
R ]σλ. (4.173)
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Adding the four parts of the lepton wave, we obtain:

∂µT
µ =

m

kl
[(∂µl

1
λ − ∂λl

1
µ)D

1µ
L ]σλ +

m

kr
[(∂µr

1
λ − ∂λr

1
µ)D

1µ
R ]σλ (4.174)

+
m

kml
[(∂µl

8
λ − ∂λl

8
µ)D

8µ
L ]σλ +

pm

kmr
[(∂µr

8
λ − ∂λr

8
µ)D

8µ
R ]σλ

= (∂µYλ − ∂λYµ)
(m
kl
D1µ

L − m

kr
D1µ

R +
m

kml
D8µ

L − m

kmr
D8µ

R

)
+ [∂µ(bλ + 3w3

λ)− ∂λ(bµ + 3w3
µ)]

m

kl
D1µ

L

+ [∂µ(2bλ)− ∂λ(2bµ)]
m

kr
D1µ

R (4.175)

+ [∂µ(bλ − 3w3
λ)− ∂λ(bµ − 3w3

µ)]
m

kml
D8µ

L

+ [∂µ(−4bλ)− ∂λ(−4bµ)]
m

kr
D1µ

R

+
m

k
(∂µvλ − ∂λvµ)(D

1µ
L +D1µ

R +D8µ
L +D8µ

R ).

Only one term more appears, compared with what we have obtained in
Chapter 2: the first term, with a curvature field:

Cµν = ∂µYλ − ∂λYµ. (4.176)

This field is not linked to the probability current, but to a similar current,
distinguishing the role of right and left waves:

Kl :=
m

kl
D1

L − m

kr
D1

R +
m

kml
D8

L − m

kmr
D8

R. (4.177)

We thus get, on the place of (2.246):

∂µT
µ =

[
qF e

µλ

(
Jµ +

mp

kmr
D8µ

R

)
+ CµλK

µ
l (4.178)

+ iqFm
µλ

(m
kl
D1µ

L − m

kr
D1µ

R − 2
m

kml
D8µ

L − p
m

kmr
D8µ

R

)
+
m

k
GµλJ

µ
l

]
σλ.

If the electron is lone, if weak interactions are not at play, and neither C
nor G fields, it remains:

∂µT
µ = qF e

µλ

(m
kl
D1µ

L +
m

kr
D1µ

R

)
σλ, (4.179)

This gives the Lorentz force (1.305) acting on the electric current je =
e(mklD

1
R+ m

krD
1
L) of the electron. We truly obtain classical electromag-

netism at the limit of low gravitational field.

4.4.1 Probability density
The T 0

0 component of the energy–momentum tensor satisfies:

kT 0
0 = ℜ

[
− i
(m
l
η1†D0η

1 +
m

r
ξ1†D0ξ

1 +
m

ml
η8†D0η

8 +
m

mr
ξ8†D0ξ

8
)]
.

(4.180)
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For a solution of the wave equation with energy E of the complete wave,
such as:

−iD0ξ
1 =

E

ℏc
ξ1(x); −iD0ξ

8 =
E

ℏc
ξ8(x), (4.181)

−iD0η
1 =

E

ℏc
η1(x); −iD0η

8 =
E

ℏc
η8(x). (4.182)

We then have, like in Chapter 2:

T 0
0 =

E

ℏc

(m
kl
η1†η1 +

m

kr
ξ1†ξ1 +

m

kml
η8†η8 +

m

kmr
ξ8†ξ8

)
=
E

ℏc

(m
kl
D1

L +
m

kr
D1

R +
m

kml
D8

L +
m

kmr
D8

R

)0
=
E

ℏc
J0, (4.183)

noting always the weighted currents J with relative weights m
kl ,

m
kr ,

m
kml

and
m

kmr
. The reason of the existence of a probability in quantum mechanics re-

mains thus the equivalence between inertial and gravitationnal mass, which
implies:

E =

∫∫∫
dvT 0

0 ;

∫∫∫
J0

ℏc
dv = 1. (4.184)

We will note that, if the Xµ terms are no longer negligible, which make the
wave equations go out of the Lagrangian case, neither energy–momentum
nor currents remain conservative. These Xµ terms may be at play with the
strong gravitational field around black holes. Even in the case of a weak
field, the fact that the C field acts on a difference between left and right
currents may have been important for the preference of weak interactions
for left waves.

4.4.2 Quantization of the kinetic momentum
The approach is exactly that of section 2.5. The invariance under the

Cl∗3 group of the energy–momentum tensor V , together with the normal-
ization of the probability current, leads to the quantization of the kinetic
momentum with the value ℏ/2, in conformity with what we know since 1926.

We saw in Chapter 3 how we may extend this quantization to the quarks.
To account for gravitation it is enough to replace dµ withDµ in (4.119). The
energy–momentum tensors and the quantization of the kinetic momentum
do not change with respect to Chapter 3.

4.5 The Pauli Principle
We will here supplement what we discussed in 1.5.8 and in [31].
We recall that the Pauli principle was formulated even before the discov-

ery of wave equations in quantum mechanics. In the framework of Bohr’s
model, the principal quantum number and the integer angular momentum
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due to rotational invariance were not enough to characterize the electron
states. Afterwards, the relativistic model of a particle revolving around the
nucleus gave rise to Sommerfeld’s relativistic energy levels formula (??). To
obtain rays of light as differences between these energy levels requires the
use of a “total kinetic momentum” that is not an integer (always half an odd
integer). Therein lies a contradiction between the mathematical certainties
of group theory, which implies integer numbers for the rotation group, and
well-established experimental results concerning the emission and absorp-
tion of light. This contradiction is easy to detect in a popular encyclopedia
like Wikipedia (most serious course books are unhappily not much better).
We now cite and translate the French version of Wikipedia: “In 1925 Pauli
proposed a principle saying that several electrons cannot simultaneously be
in the same quantum state. Afterwards this principle was generalized to
any fermion or particle with a half-integer spin.” The same encyclopedia, in
its English version, tells a much more explicit but actually alternative story:
“In the case of electrons in atoms, it can be stated as follows: it is impossi-
ble for two electrons of a poly-electron atom to have the same values of the
four quantum numbers: n, the principal quantum number, l, the angular
momentum quantum number, ml, the magnetic quantum number, and ms,
the spin quantum number. For example, if two electrons reside in the same
orbital, and if their n, l, and ml values are the same, then their ms must
be different, and thus the electrons must have opposite half-integer spin
projections of 1/2 and −1/2”. We now explain how these versions differ.

The Pauli principle was expressed in the framework of the Bohr atom
where the electron was a corpuscle following particular orbits determined by
these quantum numbers. This model allowed Bohr not only to understand
the possible states, but he was also able to calculate energy levels corre-
sponding to each trajectory. For instance an atom with Z protons ionized
Z − 1 times had the following energy levels:

E = −Z
2

n2
13.6eV, (4.185)

where n is the principal quantum number. This result was obtained by
equating the mechanical and electrical forces that act on an electron re-
volving around a nucleus with an atomic number Z. The Bohr model was
afterwards explained in a completely different manner by the matrix quan-
tum mechanics of Heisenberg (his results were fully compatible with this
formula), and then by the wave mechanics of de Broglie and Schrödinger.
The Schrödinger equation had some difficulties concerning this lone electron
around a nucleus. The formula of the energy levels was not in Z2 but gave
instead:

E = − Z

n2
13.6eV. (4.186)

As a result of divergences between theory and experiments like the one
above, the quantum wave had serious difficulties in matching Heisenberg’s
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matrix mechanics. To describe systems of electrons the wave mechanics
of Schrödinger used the Pauli principle along with a perturbation method.
The wave function of a system of two electrons without interaction is anti-
symmetric 5:

ψ =
1

2
[ψ(x1, y1, z1, t)ψ(x2, y2, z2, t)−ψ(x2, y2, z2, t)ψ(x1, y1, z1, t)], (4.187)

where t is time, (x1, y1, z1) are coordinates of the position of the first electron
and (x2, y2, z2) are coordinates of the position of the second electron. The
result of Schrödinger’s approach is: the wave propagates not in space-time
but in a configuration space with 3n+1 dimensions if n electrons are at play.
The wave is then reduced to a pure tool for the calculation of probabilities.

But the orbital moment and the spin quantum number ms in the spin-
up, spin-down version of the Pauli principle (the previous English version
of Wikipedia) are purely fictitious, nonphysical. The only quantum
numbers which are measurable (this has a precise and definite meaning
in quantum physics) are: the n number which is the degree of the radial
polynomial functions, j = |κ| − 1/2 because j(j + 1) is a proper vector of
the J2 operator of kinetic momentum, and the magnetic quantum number
which was formerly denoted as m and that we relabel as λ in Appendix C,
so as to differentiate it from mass. This quantum number λ is the proper
value of the J3 kinetic momentum operator (see C.2). This proper value
has not only two values but 2j + 1 values: −j, −j + 1, . . . , j − 1, j. There
are actually two kinds of states with the Dirac equation, linear or improved
(see 1.5.7), but they are not spin up – spin down states, but rather states
with positive κ (there are n(n+1) such states) or with negative κ (there are
n(n− 1) such states) (more details in 1.5.7). These states have two-to-two
correspondence, but not from one sign of κ to the other: they have two-to-
two correspondence by opposite values of λ. 6 The true exclusion principle
can use only true quantum numbers of a given scenario. For electrons in an
atom this corresponds to the orthogonalization of states: we saw in 1.5.8
how for two electrons around a nucleus this corresponds to the addition of
energies and of currents, to obtain a solution near the sum or difference
of solutions corresponding to each electron. It is thus the same for the
kinetic momentum which adds or subtracts. We explained in 1.5.8 why the
Pauli principle, for electron states in atoms, may be reformulated as such:

5. The method of perturbations starts with what happens for electrons that do not
interact, thus initially considered without electric charge, and only afterwards is the
value of the charge reintroduced. But absolutely no physical means exists to remove or
to modify the charge of an electron even a little, hence the situation from which the
calculation starts is purely theoretical, nonphysical.

6. So the sentence “several electrons cannot be simultaneously in the same quantum
state” is true, not the sentence containing an integer angular momentum l which is
only available with the nonrelativistic approximation of the Dirac equation by the Pauli
equation: Pauli’s spin-up, spin-down idea, even though very popular in course books for
chemistry, is only a pretty tale.
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two electron states must occupy orthogonal states for the Euclidean norm∫∫∫
dvJ0/ℏc, where J0/ℏc is the probability density. The existence of this

probability means that the normalization of the electron wave is derived in
1.5.5 from the equivalence principle between inertial and gravitational mass.
Now if we consider the relation existing between the energy–momentum
tensor and the current:

T 0
0 = −E

ℏc
J0. (4.188)

The orthogonality of the states gives, for the sum over space of J0/ℏc, the
value 2. We should say that the occupation number is two electrons. They
are indistinguishable: we do not know which one is on each wave, because
only one wave exists, not two. In a general way, for an atom with a system
of electrons of total charge ne, the total energy of these n electrons is, to
a good approximation, nm0c

2: thus in Sommerfeld’s energy levels formula,
the proper mass must be multiplied by n. Since the electric potential term is
also multiplied by n in the case of a neutral atom, the gap between levels is
multiplied by n2. This explains the Z2 factor in energy levels in (4.185). The
energy levels of an atom with several electrons do not allow us to allocate
some energy to each electron separately. Moreover, the ionization energy
for one electron to be displaced is calculated by the difference between the
total energy of a system of n electrons and that of a system with n − 1
electrons.

The Dirac equation, which is the linear equation approximating our im-
proved equation, has two kinds of solutions: the ones calculated by Darwin
in 1928 and that calculated by one of the present authors [13][14], which
have a Yvon-Takabayasi angle everywhere defined and small. The orthogo-
nality of the Darwin’s solutions gives the normalization of Daviau’s solutions
and vice-versa. 7.

4.5.1 Two versions of the exclusion principle
Despite the fact that the improved wave equation is nonlinear, every-

thing is as if the only possible waves for each electron of a two-electron
system are the sum or difference of two electronic states. Therefore the
wave equation for an electron of a two-electron atom is the same equa-
tion for an identical kind of wave, except that the environment, thus gauge
terms and mass terms, are changed – this is essential to be able to unify all
interactions.

The spin-statistics conjecture afterwards transformed the Pauli principle
into another statement: the wave of a system of fermions is the antisym-
metric product of these fermion waves. This is a statement on the local

7. With a Euclidean norm we indeed have for any vector:

u · v =
1

4
(||u+ v||2 − ||u− v||2)

.
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value at a point of space-time when the condition of orthonormalization
acts on the whole wave. These two statements are not equivalent. The lo-
cal statement of the principle is stricter than the global statement, because
the sum over all space of a null function is certainly null. But the statement
with a local condition, for the Pauli principle, changes the nature of the
wave, which is no longer a function of space-time in C4, but the difference
between two products of such functions. It is the same with the nonrela-
tivistic approximation of the Dirac equation by the Pauli wave equation,
where the space of values of the wave function becomes C2, not the C field.
As this space of values is not endowed with an internal product, quantum
mechanics supposes the existence of a "tensor product". 8 This transforms
the electron wave (a function of the 4-dimensional space-time into C2), for a
two-electron system, into a function of a 7-dimensional space with value in
C4, and for the electron of an n-electron system, into a function of a (3n+1)-
dimensional space into a C2n . This is totally unacceptable in a theory of
gravitational field which cannot change the nature of this field following the
number of objects with a mass. On the contrary, with a fermionic wave with
value in End(Cl3), and with an internal product which is the composition
of endomorphisms we may adopt, without any mathematical difficulty, the
stricter sentence: The wave of a fermion system is the antisymmetric
product of the fermion waves.

1. Because it is compatible with the normalization of the electron waves,
as a result of the equivalence principle at the basis of general relativity.

2. An electron neither changes its wave nor the type of its wave when it
enters an electron system or when it exits. Only interaction terms (gauge
terms and mass terms) change with the context.

3. This is possible for the spinor wave only, since orthogonality as a
consequence of the normalization is usable only because the Dirac matrices
are not uniquely defined. From this non-uniqueness the sum and difference
of normalized orthogonal solutions obtained from one set of γµ matrices are
normalized as well as orthogonal solutions for another set of γ′µ matrices
[13].

4. We have seen in (1.242) that with the orthonormalization the sum or
difference of solutions allows us to get for the sum of the local energy density
the sum of the global energies of two electrons. A consequence of the Pauli
principle is then: the energy–momentum of a system of two electrons is the
sum of the momentum-energies of two electrons separately considered. We
may see the “normalization” part of this reasoning as firmly justified by the

8. The definition of such a product is not at all trivial, because quantum field the-
ory supposes here, without any mathematical proof, that the properties of the tensor
product (well established only for the finite-dimensional linear spaces used in classical
mechanics) can account for the tensorial densities or spinor waves of relativistic quantum
mechanics, and thus are supposedly able to account for the spin of a particle system
(infinite-dimensional linear spaces). Moreover with (4.187) not only the set of images is
changed, but also the set of departure, which is a (3n + 1)-dimensional space. Perhaps
still worse, the starting point is the nonrelativistic tale of the spin-up/spin-down theory.
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equivalence principle.
5. As first pointed out by de Broglie, the local version of the exclusion

principle (the anti-symmetrizing of the wave functions) gives the symmetriz-
ing of bosonic waves as soon as a bosonic wave is built from an even number
of fermionic waves [55].

The global statement is sufficient from the point of view of electrostatics,
because this is enough to get the value ne for the total charge of a system of
n electrons. Moreover since the scalar product employs a summation over
the whole space, this justifies the existence in quantum physics of a natural
nonlocality for such a sum taken at all points.

What we discuss comes from properties of the electron wave and of the J
current. This may be easily transposed to the Jq current, and thus to a sys-
tem of protons, or to a system of neutrons, or to an atomic nucleus. On the
contrary, binding forces are strong enough such that the mere summation
of masses is there simply a bad approximation.

4.5.2 The equivalence principle

About the extremal principle which up to now has guided the whole
of mechanics and optics, we explained in 2.3.4 how this principle is not
above physical laws, and that this principle simply emerges from the Clifford
algebraic structure. We now see how the equivalence principle is also a
consequence of properties of the wave with spin 1/2.

In the previous discussion of the Pauli principle we saw that the mass
term of the wave equation is variable, in accordance with the number of
particles at play. And the energy of photons emitted or absorbed is the dif-
ference between the energy levels of the system (atom, molecule, ...) before
or after emission or absorption. Denoting by mb the mass of the system
considered before and ma the mass of the transformed system, we neces-
sarily consider the Lagrangian density as a difference. We have two other
reasons for this difference: the potential b is −a7 and the differential term is
also easily expressed as a difference. We recall that the Lagrangian density,
in the lepton case, is the sum of four terms, and in the quark case the sum
of twelve terms. For the left wave of the electron, with (4.119) and (4.125)
and supposing the cancellation of the Xµ, we have:

0 = kL1 = −iη1†σµ
[
∂µη

1 + i
(3
2
bµ + 3w3

µ +
a7µ
2

+
1

2
Yµ + lvµ

)]
η1

= −kL1
i + kL1

g (4.189)

L1
i =

i

2
η1†∇η1 − η1†

(3
2
b + 3w3 −mav

)
η1, (4.190)

L1
g =

i

2
(∂µη

1†)σµη1 + η1†
(1
2
a7µ +

1

2
Yµσ

µ +mbv
)
η1, (4.191)

l = mb −ma; L1
i = L1

g. (4.192)
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We may notice that we did not group together the two terms containing
b = −a7 on only one side. The fact that this potential belongs to each one
of the two parts comes from this property: the multiplication by i works
in the same manner whether from the right side or from the left. Thus the
potential is naturally present both in the L1

i part that allows us to get the
forces acting on the electron, and in the L1

g part that holds the an giving
the Christoffel symbols. To these two parts of the Lagrangian density are
attached two tensors of energy–momentum, equal from their definition:

T 1µ
Liλ =

i

2
η1†σµ(∂λη

1)− η1†σµ
(3
2
bλ + 3w3

λ −mavλ

)
η1, (4.193)

T 1µ
Lgλ =

i

2
(∂λη

1†)σµη1 + η1†σµ
(1
2
a7λ +

1

2
Yλ +mbvλ

)
η1, (4.194)

0 = −T 1µ
Liλ + T 1µ

Lgλ; T
1µ
Liλ = T 1µ

Lgλ (4.195)

Since this may be generalized for all parts of the Lagrangian density we
obtain in a very general manner an equality between the inertial tensor Ti
and the gravitational tensor Tg: this is the equivalence principle.

4.5.3 Mössbauer effect
A photon may be absorbed or emitted without any recoil of the nucleus,

exactly as if it was emitted or absorbed by the whole crystal containing
the atom and its nucleus, in spite of the fact that the frequency of the
photon corresponds to a difference between energy levels of one nucleus.
The understanding of this effect induces us to admit that not only is the
energy–momentum tensor a difference, but also the proper mass at play in
the definition of the quantum wave:

ma = mT ; mb = mST , (4.196)

where mT is the total mass (eventually that of the whole universe if it is
necessary) and mST the mass of the subtotal, which is the previous sum
minus that of the system that is emitting or receiving. It is well known
that a frame of reference usable in quantum mechanics must be neither too
massive, if we want to sidestep gravitation, nor too light because it is then
impossible to neglect phenomena of recoil due to the momentum of emitted
or absorbed photons[7]. It is always possible to take as the total mass that
of the reference frame in which the measurements are made. Since only a
difference is useful there is no problem with the immensity of masses, even
if we must include stars and galaxies.

If we study a particular electron, the mass at play is the proper mass
of this single electron. If the electron belongs to a system of two electrons,
the mass used in the double equality E = mc2 = hν is the mass of the
system. It is the same for the protons or the neutrons in a nucleus, or even
for a crystal. This explains why the properties of a nucleus are different
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according to whether the nucleus is surrounded by an electron cloud or not,
particularly for the probability of radioactive decay [70].

We then see that it is possible to analyze all particles and systems of
relativistic quantum mechanics with physical waves propagating in a space-
time whose properties are determined by these physical waves. It remains
for physics indeed to go from theory to practice.

4.6 The whole space-time manifold

4.6.1 Local and global structure of space-time

By writing x = xµσµ, quantum mechanics actually includes the set of x,
which is the space-time manifold, in Cl3. Moreover, the space-time length
is given by det(x) = xx = x · x. This equality implies that multiplication
is the single operation to be considered. Thus we must also consider the
physics point-of-view about length and use [42]:

x :=
x

la
; x ∈ Cl∗3. (4.197)

The first difference with classical geometry is that the origin of the measure
of time and space is at x = 1, not 0. Second, Cl3 is the Lie algebra of
the Cl∗3 multiplicative group. This means that the neighborhood of any
point O is isomorphic to Cl3. This set is a linear space which contains
two subsets: Cl∗3, which is the set of x satisfying det(x) ̸= 0, and the light
cone, which is the set of x satisfying det(x) = 0. Third, these conditions
exclude themselves, therefore the light cone is included in each (local) Lie
algebra, not in the (global) Lie group Cl∗3. Fourth, the only link between
each Lie algebra and the whole Lie group is the exponential function, which
we calculate as follows:

x = a+ bu; u = x1σ1 + x2σ2 + x3σ3; (x1)2 + (x2)2 + (x3)2 = 1,

xn =
1

2

[
(a+ b)n(1 + u) + (a− b)n(1− u)

]
(4.198)

exp(x) =

∞∑
n=0

xn

n!
=

1

2

[
ea+b(1 + u) + ea−b(1− u)

]
= ea[cosh(b) + sinh(b)u].

(4.199)

Moreover, we have

det[exp(x)] = exp[tr(x)] = e2a. (4.200)

Thus, with exp(x) = A+Bu = A+B(x1σ1 + x2σ2 + x3σ3) we obtain:

e2a = det[exp(x)] = (A+Bu)(A−Bu) = A2 −B2 (4.201)
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which implies that the light cone (A2 = B2) is the boundary of the space-
time manifold and that nothing exists outside this boundary, since e2a > 0.
From this sign we may see the purely theoretical and local character of the
Schwarzschild solution in general relativity. Consequently we obtain:

ea =
√
A2 −B2; cosh(b) + sinh(b)u =

A+Bu√
A2 −B2

.

a = ln(
√
A2 −B2) =

1

2
[ln(A+B) + ln(A−B)], (4.202)

b = sinh−1
[ B√

A2 −B2

]
=

1

2
[ln(A+B)− ln(A−B)],

a+ b = ln(A+B); A+B = ea+b. (4.203)

4.6.2 The EPR paradox
Two photons are emitted at point-event O. We suppose, simplifying the

calculation, that they are emitted in two orthogonal directions, σ1 and σ2,
of the tangent space-time at O. They are absorbed at the same time y > 0,
also to simplify the calculation. The photon emitted in the direction σ1 is
absorbed at the point-event:

x1 = a1 + b1u1 = (a+ y) + (bx1 + y)σ1 + b(x2σ2 + x3σ3),

a1 = a+ y; u1 = x11σ1 + x21σ2 + x31σ3; (x11)
2 + (x21)

2 + (x31)
2 = 1,

(x1 + y/b)2 + (x2)2 + (x3)2 = 1 + 2x1y/b+ (y/b)2, (4.204)

b1 = b
√
1 + 2x1y/b+ (y/b)2; u1 =

(x1 + y/b)σ1 + x2σ2 + x3σ3√
1 + 2x1y/b+ (y/b)2

.

The photon emitted in the direction σ2 is absorbed at the point-event:

x2 = a2 + b2u2 = (a+ y) + bx1σ1 + (bx2 + y)σ2 + bx3σ3. (4.205)

And we also have:

a2 = a+ y; u2 = x12σ1 + x22σ2 + x32σ3; (x12)
2 + (x22)

2 + (x32)
2 = 1,

(x1)2 + (x2 + y/b)2 + (x3)2 = 1 + 2x2y/b+ (y/b)2, (4.206)

b2 = b
√
1 + 2x2y/b+ (y/b)2; u2 =

x1σ1 + (x2 + y/b)σ2 + x3σ3√
1 + 2x2y/b+ (y/b)2

.

On the space-time manifold, the point event O is at X = O/la = A+Bu =
exp(x) while the photon emitted in the direction σ1 is absorbed at the
point-event X1 =M/la = exp(x1). The photon emitted in the direction σ2
is absorbed at the point-event X2 = P/la = exp(x2). The position of the
point event P , seen from 1, is:

x0
2 = [exp(x)]−1/2 exp(x2)[exp(x)]

−1/2. (4.207)
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The position of the point event P , seen from M , is:

x1
2 = [exp(x1)]

1/2[exp(x)]−1/2 exp(x2)[exp(x)]
−1/2[exp(x1)]

1/2. (4.208)

The position of the point event M , seen from 1, is:

x0
1 = [exp(x)]−1/2 exp(x1)[exp(x)]

−1/2. (4.209)

The position of the point event M , seen from P , is:

x2
1 = [exp(x2)]

1/2[exp(x)]−1/2 exp(x1)[exp(x)]
−1/2 exp[(x2)]

1/2. (4.210)

And we have, since the determinant of a product is the product of the
determinants:

det(x1
2) = ea+ye−ae2(a+y)e−aea+y = e2(a+y+y),

det(x2
1) = ea+ye−ae2(a+y)e−aea+y = e2(a+y+y). (4.211)

Therefore at each point-event, when a photon is absorbed at the local time
a + y, each observer sees the absorption of his photon as preceding, with
the same length of time y, the arrival of the photon for the other observer:
the absorption of the other photon is in the future of each observer, not
at the moment of arrival. This strange result seems very similar to the
fact that each observer sees any length shorter for a moving object: an
observer in the moving object also sees the other observer as moving, thus
with shorter length. The paradox is that a measurement made on either of
the particles apparently collapses the state of the entire entangled system
and does so instantaneously, before any information about the measurement
result could have been communicated to the other particle [4]. Our previous
calculation shows the key to this paradox: the instantaneous character of the
measurement is simply false, the “collapse” only results from the supposition
that this situation may be described by a tensor product of Hilbert spaces
whose elements are not defined in the mathematical sense of the word.
Look out! We don’t deny quantum entanglement. We say that the paradox
is only in the interpretation of this situation by a nonrelativistic Hermitian
theory, whereas physics must account for the fact that each "fixed" observer
is journeying in time on the space-time manifold, even if he does not travel
in space.

The understanding of the true geometry of space-time simply requires
the use of the space-time manifold itself, not merely the use of the flat
tangent space-time at the particular point-event O.

Einstein, Podolsky and Rosen said [66]: “From this follows that either (1)
the quantum-mechanical description of reality given by the wave function
is not complete or (2) when the operators corresponding to two physical
quantities do not commute the two quantities cannot have simultaneous
reality. For if both of them had simultaneous reality — and thus definite
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values — these values would enter into the complete description, according
to the condition of completeness.”

Experiments with the polarization of two photons simultaneously emit-
ted (very fine indeed and meriting the Nobel prize for Aspect) can neither
prove (1) nor (2) because the absorption of these photons cannot be simul-
taneous at the points where each absorption is effective. The quantum wave
used here, with value in End(Cl3), and not just in C, is enough to prove
that (1) was true in 1935, independently of what we now think about (2).
More generally no contradiction can exist between general relativity and
quantum mechanics. Any apparent contradiction results from bad
approximations of relativistic laws.

4.6.3 The arrow of time, the expansion of the universe
Any point of the space-time manifold is at a position:

X = la exp(a+ bu) = la(A+Bu); A = ea cosh(b); B = ea sinh(b). (4.212)

Thus the time position laea cosh(b) is the product of positive real numbers:
time is an oriented quantity, the arrow of time has a geometric root.
The time variable goes from 0 to +∞.

Now we consider a photon received at this position X, coming from a
distant galaxy, for instance along the σ1 direction. It was emitted at the
position:

la exp[a− y + (bx1 − y)σ1 + b(x2σ2 + x3σ3)] = la exp(a1 + b1u1), (4.213)

with 9

a1 = a− y; u1 = x11σ1 + x21σ2 + x31σ3; (x11)
2 + (x21)

2 + (x31)
2 = 1,

(x1 − y/b)2 + (x2)2 + (x3)2 = 1− 2x1y/b+ (y/b)2, (4.214)

b1 = b
√
1− 2x1y/b+ (y/b)2; u1 =

(x1 − y/b)σ1 + x2σ2 + x3σ3√
1− 2x1y/b+ (y/b)2

.

The photon was emitted at

xe = la e
a1 [cosh(b1) + sinh(b1)u1]. (4.215)

At this point-event the local time was te = lae
a1 cosh(b1) ≈ lae

a1+b1/2.
The same photon is absorbed at the point-event X, then at the local time
ta = lae

a cosh(b) ≈ lae
a+b/2. The only constant object of this geometry is

the Lie algebra: each local tangent space, in each point of the manifold, is
isomorphic to the Lie algebra of the group. We will then suppose that

d(a1 + b1) = d(a+ b);
dte
te

=
dta
ta

(4.216)

9. Since we now look at past, a1 < a.
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And we have
νa
νe

=
dte
dta

. (4.217)

In the first approximation, b1 ≈ b, we obtain:

1

1 + z
=
νa
νe

=
dte
dta

=
d[lae

a1 cosh(b1)]

d[laea cosh(b)]

≈ la da e
a−y cosh(b)

la da ea cosh(b)
=

1

ey
≈ 1

1 + y
. (4.218)

This means that the redshift due to the expansion of the universe, previously
interpreted as a Doppler effect, is a direct effect of the geometry of space-
time, and the z parameter, defined as (νe − νa)/νa, is almost equal to y.
But this is true only as a crude approximation, or as a false velocity. When
y is small this redshift seems proportional to y. The Hubble parameter
(73.3±1.4km/s/Mpc) gives for the distance 1Mpc the value z = 0.0002443,
thus giving R = la e

a+b/2 ≈ 6.3× 1025m.
Using the geometric condition (4.216), which results from the Lie algebra

as the only fixed framework, independent from the space-time position on
the manifold, we may calculate more precisely the ratio dte/dta in the case
where y is small. We have:

d[lae
a1 cosh(b1)]

d[laea cosh(b)]
=
d[ea−y cosh(b1)]

d[ea cosh(b)]
=
e−y cosh(b1)

cosh(b)
=

1

f(y)
(4.219)

f(y) := ey
cosh(b)

cosh(b1)
≈ f(0) + yf ′(0) + y2

f ′′(0)

2
+ ... (4.220)

We use:

b1 := bg(y) =
√
b2 − 2x1by + y2; g(y) =

√
1− 2

x1

b
y + (

y

b
)2,

g(y) ≈ 1− x1

b
y +

1− (x1)2

2b2
y2 +

x1[1− (x1)2]

2b3
y3 + . . . . (4.221)

And we obtain:

f(y) ≈ ey
eb

eb1
= ea(y) (4.222)

a(y) = y + b− b1 ≈ (1 + x1)y − 1− (x1)2

2b
y2 − x1[1− (x1)2]

2b2
y3 + . . . ,

f ′(y) ≈ a′(y)ea(y) = (1 + x1)[1− 1− x1

b
y − 3x1(1− x1)

2b2
y2 + . . . ]ea(y).

(4.223)

From the values of the Hubble parameter and of la we obtain a+ b ≈ 142.
We only know that a > b > 0. The ratio a/b is unknown. If our position
in the manifold is anywhere, for instance is (a+ b)/a ≈ a/b, we could have
a ≈ 88 and b ≈ 54. This should give a ratio B/A very close to 1. We now
look at the acceleration or deceleration of the expansion.
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4.6.4 Beginning of the acceleration
Defining h such that h(y) := f(y)/y the redshift seems accelerated if

and only if h is increasing, hence if h′(y) > 0. We obtain:

y2h′(y) = yf ′(y)− f(y) ≈ [ya′(y)− 1]ea(y) (4.224)

= [−1 + (1 + x1)y − 1− (x1)2

b
y2 − 3x1[1− (x1)2]

2b2
y3 + . . . ]ea(y).

For instance if b = 40 and x1 = 0.6 we have:

y2h′(y) ≈ [−1 + 1.6y − 0.016y2 − 0.00036y3 + . . . ]ea(y) (4.225)

Thus, in this case, h′(y) > 0 if and only if

y > y0, y0 ≈ 0.63. (4.226)

Moreover, the sign of the coefficient of y3 indicates a sign change for large
y, but the method of calculation used here does not give the value of this
new change of sign.

Hence the acceleration of the expansion seems to begin near y0, with
possible differences depending on the direction of observation with regard
to the whole space-time manifold. And the expansion seems to decelerate
for very large z. Thus there is no need for either dark matter 10 or repulsive
gravity to explain all modern observations of cosmological redshifts. What
we obtain here is completely different from the cosmology developed since
Einstein’s works on relativistic gravitation. We think that it is much more
satisfactory, because we do not need to suppose a homogeneous distribution
of matter, never observed at small or very large scales; neither is there need
for a gigantic amount of unknown matter, nor for an ad hoc cosmological
constant, nor for an adjustment in the parameters to explain the recent
acceleration of the expansion. Furthermore we have obtained two results
that Einstein should have very much liked: first, a space-time which, as a
whole manifold, is invariant (for a given cosmological time t, space is not
an hypersphere S3 with growing radius, it is a R3 unlimited and globally
invariant. Only the elements of the whole manifold are variable. Second,
the geometry of the cosmos, globally, is independent of matter, integrating
to the geometry both inertia and gravitation.

10. The movement of stars in galaxies and the movement of galaxies in galaxy clusters
is another question. Indeed the absence of necessity for the cosmology of dark matter
does not prove its non-existence. The simple name “black hole” is enough to prove that
some objects may exist and be unable to directly send light.



Chapter 5

Why?

Thousands of years ago, physics began with the questions of our ances-
tors: why the regular return of the Sun, why the phases of the Moon? Why
the wind, the rain, why the rainbow after a thunderstorm? When physics
started to progress more and more quickly, understanding the motion of the
planets, linking together all these “whys” into a theory of gravitation, of
electricity and of light, gave rise to many other whys.

Take the instance of light. Physicists began by understanding some of
its properties, like the fact that it originated in the Sun before coming
to the retina of our eyes, and not the reverse, as was long believed. Go-
ing a little further they understood some laws governing these properties,
for instance the law of refraction when light passes from one medium to
another with a different refractive index. These laws are described with
mathematical tools, such as sines of angles of refraction. Next these laws
depend on principles which are, in a sense, laws governing laws. Con-
cerning light, Pierre Fermat understood that the law of refraction comes
from the following physical principle: light automatically chooses the path
of shortest duration. We previously did not only study properties of quan-
tum waves (they are functions of space-time with values in Cl∗3), we have
studied laws: partial differential equations for the wave, also the orthonor-
malization of the electron wave and the existence of a probability density.
We also obtained the laws of motion for a charged fluid. We have even
explained how these laws come from principles: the wave equations arise
through the Lagrangian mechanism from an extremal principle resulting
from a Lagrangian density. The orthonormalization of the wave comes from
the principle of equivalence between inertial mass and gravitational mass.
What is newest here: to end up with a causal loop, by the deduction of
these principles from the properties of matter waves themselves. We have
completely dissected how the extremal principle is, for quantum waves, a
consequence of properties of the quantum wave as a function with value in
a particular Clifford algebra. These properties are linked to the structure of

189



190 CHAPTER 5. WHY?

space-time, the fact that time is 1-dimensional and space is 3-dimensional.
We have also explained how the equivalence principle comes from the prop-
erties of all densities of energy–momentum.

What we have continued here is proper to the building up of science: to
search for laws from properties of physical objects, and not beyond these
objects. The causal loop that we have just described is hence a success-
ful realization of the scientific process for this field of science that studies
matter, called physics. And as a loop closes on itself this rounds out the
process, even if a loop may indeed be extended, doubled or integrated into
other similar loops.

The double equality E = mc2 = hν is an essential component to these
parts of our causal loop which have been progressively improved over time.
The equality E = mc2 comes from the electrodynamics of matter in mo-
tion, obtained by Albert Einstein in 1905. Straight after sending his article
for publication he accounted for this: if all matter has an electromagnetic
origin, then E = mc2. This equality is extremely well established by experi-
ment, but as a consequence the if-then nature of the statement is somewhat
forgotten. Physicists no longer asked: why does all matter have an electro-
magnetic origin? Here we have carried our knowledge on this point a little
further: all fundamental objects of physics are fermions obeying the same
laws; thus saying that all matter has the same origin is equivalent to this:
any mass-energy in the universe comes from fermions. Hence if any boson
seems to have a proper mass, it is composed of fermions that possess this
mass.

After his discovery of the electrodynamic laws of matter in motion,
Einstein reconsidered gravitation, starting from the identity between in-
ertial mass and gravitational mass. This identity implies that the gravita-
tional field is an acceleration field, not a force field, unlike electromagnetic
forces. He thus understood that gravitation was a completely geometric
phenomenon, linked to the structure of space-time itself, its curvature. But
then why was gravitation this way? Why the equivalence between inertial
mass and gravitational mass? We have also advanced a little further here by
showing that Lagrangian densities of fermions may naturally be interpreted
as a null difference between gravitational terms and inertial terms. We have
even further advanced the next question, “Why is this the case?” The dif-
ferent terms of the wave equations are the only possible ones, able to exist
in a manner compatible with the form invariance of the wave equations.
Furthermore these wave equations are form-invariant due to the properties
of the structure of waves themselves. This causal loop goes through the
Lagrangian mechanism that we have dissected and which contains no meta-
physical principle. Everything arises from the algebraic structure automat-
ically associated to the geometric structure of space-time. This structure
is itself linked to the quantum wave, which has value on the Cl∗3 manifold
that includes this space-time.

The second equality of the pair, E = hν, was first obtained by Max
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Planck in his studies of the laws of the radiation issuing from a material
heated at a high temperature. The equality contains a constant which is
rightfully named after its discoverer. This was extended twice, first by
Albert Einstein who introduced the wave-particle dualism for light as early
as 1905, then by Louis de Broglie who a century ago extended this dualism to
all matter[53]. Between then and now, multiple discoveries of this quantum
world have taken place. They are nowadays described by the Standard
Model of quantum physics.

5.1 Einstein was right

Despite his discoveries, both of wave-particle dualism and of gravitation
as geometry of space-time, Einstein ended up being isolated from the scien-
tific community: A quantum physics was developed in a very different way
from the physics of gravitation. Einstein continued to search for a unify-
ing synthesis aiming to encompass electromagnetism and quantum physics
along with the physics of gravitation. He was seeking after what was so
characteristic of his theory of gravitation: a completely relativistic physics,
with a field following a partial differential equation, deterministic, and able
to yield the laws of motion of field sources.

This is exactly what comprises the set of partial differential equations
that we have obtained for the fermionic waves: they are completely deter-
ministic and they allow us to derive the laws of motion of these sources of
gauge fields, which fermions actually are. Einstein was thus right to attempt
such a synthesis, as our previous chapters show it to be workable.

Why has Einstein not been understood? The first reason was the novelty
of his understanding of the nature of space and time, particularly his re-
jection of an absolute time. Schrödinger, who himself perfectly understood
the relative time of Einstein’s gravitation, first found a nonrelativistic wave
equation for de Broglie’s wave. This wave equation, plus Pauli’s exclusion
principle, resulted in a wave which does not have direct physical reality.
This wave does not propagate in space-time but in an absolute time and in
configuration space, whose geometrical properties Einstein himself was the
first to use.

From 1917 until his death Einstein made many attempts to reconcile
gravitation, electromagnetism and quantum physics. He tried for instance
a manifold with torsion, in a manner very close to our calculations. But his
starting point was not the chiral right and left waves issuing from the dis-
covery, just after his death, of maximal parity violation in weak interactions.
Moreover, nonlocal properties of quantum waves (he first conceived of their
existence) were not yet understood. Einstein was indeed not truly happy
with his theory of gravitation. He had serious doubts about the longevity
of his theory, notably because the left side of his equation, which is purely
geometric, is much stronger than the right side, which was not uniquely
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defined, which may or may not include a cosmological constant. Einstein
was not fortunate with his view of the whole of space-time as necessar-
ily invariant and steady-state, while astronomers discovered the immensity
of the cosmos that appeared to be expanding. There also it was Einstein’s
view which was right, since the space-time manifold, invariant in its totality,
is perfectly compatible with the redshift of distant galaxies, and moreover
with a recent acceleration of this redshift, an acceleration measured today
by astronomers, and which can be explained as a purely global geometric
effect (see 4.7.3).

5.1.1 “There is no alternative”

Certainly there is no way to escape the double equality E = hν = mc2,
and it should be stupid to claim the opposite. Certainly, it is impossible to
avoid Heisenberg’s inequalities since the kinetic momentum of all fermions
is quantized. We agree all the more since we know why. But for many other
things an alternative exists, and the proof is precisely our work: we have
worked out laws of nonrelativistic quantum mechanics and obtained better
results. A common opinion still believes the Dirac equation as “a kind of
Schrödinger equation.” This is false! This error persists only because of
the well-hidden “sleight of hand” changing the Dirac equation into another
nonrelativistic equation before the presentation of the Hamiltonian density.
The electromagnetic interaction is part of a gauge interaction described by
a noncommutative U(1)× SU(2) gauge group: it is therefore impossible to
dissociate this interaction from other electroweak interactions.

Quantum field theory was developed from a wave with only one phase.
But the electron always has two phases. Certainly the second phase, which
appears in magnetic phenomena and in electroweak interactions, is very
difficult to see in many situations: Only then does quantum electrodynamics
work perfectly, even with its most surprising predictions.

In physics the universe is what it is. We have changed the title of this
work from “Developing a Theory of Everything” in the first edition to “Devel-
oping the Theory of Everything”; it is another way of saying that there is no
alternative. Time must be ordered, thus time is necessarily unidimensional.
Space is 3-dimensional, thus the algebra of space is Cl3. The rotational in-
variance of the laws of mechanics (there is no privileged direction in space)
has been replaced in quantum mechanics by the invariance under the SU(2)
Lie group. This leads one to consider (since nearly a century ago!) space-
time as included in the part of Cl3 containing SU(2), which can only be
the whole multiplicative group Cl∗3: the space-time of general relativity is
a four-dimensional manifold, and Cl∗3 is just big enough (Whitney’s theo-
rem), with its eight dimensions, to include any four-dimensional manifold.
The pseudometric of space-time comes from the determinant, and thus the
signature of space-time is +,−,−,−. Cl∗3 is a Lie group, each Lie group is
associated to a unique Lie algebra, and the Lie algebra of Cl∗3 is Cl3: there
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is no alternative. A Lie group is a manifold and the tangent space at any
point of the Lie group is isomorphic to the tangent space at the neutral
element of the group, which is the Lie algebra: no alternative!

5.1.2 After this work

When we state why the Weinberg–Salam angle θW exactly satisfies the
equality sin(θW ) = 1/2, or why the charge of the d quark is exactly a third
of the charge of the electron, the precision is certainly above eleven signif-
icant digits since it is exact. The advantages of a correct understanding
concern not only the precision of predictions: Understanding why two col-
ored quarks exist in each generation, why leptons are insensitive to strong
interactions, why a Lagrangian mechanism exists, how the electromagnetic
field is directly linked to the energy–momentum of the quantum wave – these
are definitive advancements. The same predictive power must be expected
for any proposed alternative. If such an attempt obtains, for instance, bet-
ter predictive power from a Lagrangian with both an independent fermion
part and a boson part, the existence of the Lagrangian itself will need to be
accounted for. Indeed we gave an explanation for the existence of Lagrange
equations in the fermion wave case: Thus any attempt to build a ToE will
be asked to do the same. We arrived at a simple origin of light polariza-
tion: Any further ToE attempt will be asked for its ability to derive the link
between the electromagnetic field and energy–momentum of the fermion
wave. We also understood the geometric reason for the time arrow, and the
redshift of light coming from very distant stars, including the recent acceler-
ation of this redshift, all from the very structure of the space-time manifold:
any further ToE attempt will be asked for such a simple explanation of this
“expansion”.

The most important and novel understanding brought by the present
work is the quantization of the kinetic momenta of the electron, neutrino,
proton and neutron with the same ℏ/2 value. From this quantization of the
kinetic momentum come both Heisenberg’s inequalities and the quantiza-
tion of the electric charge. Any attempt to build a ToE will also be expected
to obtain this quantization and with the true value, fully established exper-
imentally.

5.2 de Broglie was right

Einstein and de Broglie were right, because the quantum wave is funda-
mentally relativistic. With the electron wave, whether in the case of low or
of high velocity, the DR and DL currents, formed respectively by the right
and left parts of the quantum wave, are on the light cone. These currents
indeed have a sum which is the probability current, linked to the invariance
of the electric gauge. This J current is the only one visible in the version
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of quantum mechanics at the basis of QFT. But the DR and DL currents
also have a difference which is the second K current. This current is also
present in the wave equation. It is also linked to the chiral gauge, and thus
linked to magnetism and to weak interactions. The dependence of tensor
densities on the wave chirality concerns not only currents; it is also extended
to densities of energy–momentum and of kinetic momentum, and thus to
the electromagnetic field. By accounting for this dependence, we obtained
in 2.5 and 3.7 the quantization of kinetic momentum. Since the quantum
wave is fundamentally relativistic, the replacement of the Dirac equation
by the Pauli equation is untenable; thus the integration of the electron into
Hamiltonian physics does not work out well. This is why difficulties arise
in all QFT calculations, such as the infinite quantities that must be gotten
around, renormalization and anomalies that must be tamed. And all this
turns out to be impossible for gravitation, and justly, because gravitation
is completely relativistic.

In his time Einstein could not elaborate a better theory, as he could
not know discoveries made after his death, discoveries that later allowed
the building of the Standard Model. The most important discovery of the
second half of the last century (according to Lochak) was the violation
of parity in weak interactions. The different roles of right and left waves
is important as well for the Standard Model which carefully accounts for
this difference, as for general relativity. This is due to the orientation of
space, placed again at the center of physics. This orientation of “space” is
a convenient shorthand; it is actually the orientation of space-time and the
arrow of time which are conserved, and therefore the orientation of space.

De Broglie was very much aware of the defects of quantum theory that
stems from nonrelativistic wave equations. He thoroughly studied relativis-
tic Dirac theory twice, and published two books [54, 57]. He also used the
Dirac wave as the starting point for his theory of light [55, 56]. These works
were not understood; they were too far ahead of his time. And de Broglie
could not know the existence of quarks and their chromodynamics. The
present work was mainly developed by two persons who met in the sem-
inar organized by de Broglie himself in the “Fondation Louis de Broglie”
created in Paris to continue his scientific work. The director of this private
foundation was G. Lochak who discovered the leptonic magnetic monopole
[84, 85]. His monopole wave equation was the starting point of our work.

De Broglie not only bequeathed us his very deep knowledge of the various
domains of classical and quantum physics, but also advised us to exercise
our freedom in critiquing the fashions of a system where everyone takes too
many unsound habits for granted.
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5.3 Bohr was also (partly) right

During the early development of quantum mechanics, the universality of
Heisenberg’s inequalities and the implied limits of our knowledge were not
at all evident. Einstein, who had encountered nothing similar to his theory
of gravitation, entered into a great debate with Bohr, but Bohr’s arguments
prevailed, and justly because it was he who made use of the universality of
Einstein’s relativistic physics. The generalization of relativistic invariance
to the Cl∗3 group again takes up this universality and allows us to obtain,
as a consequence of the properties of fermion waves, the quantization of the
kinetic momentum with a value of ℏ/2 (see 2.5 and 3.7).

In his second book on the Dirac theory (see [57] 2.6), from the quan-
tization of the kinetic momentum, de Broglie deduced the precise form of
the uncertainty relations for two quantities A and B canonically conjugated
(like x and px): σA · σB ⩾ ℏ/2. Before this book, de Broglie had studied
Heisenberg’s inequalities in an earlier work written in 1950-1951 but edited
only thirty years later [58] thanks to Lochak. The derivation of the quan-
tization of kinetic momentum allows us to obtain the fourth uncertainty
relation in the form proved by de Broglie: σt ·σE ⩾ ℏ/2, where σt is the un-
certainty in the temporal coordinate of an event and σE is the uncertainty
of the energy at work in this event.

5.4 Intrinsic or statistically random?

Einstein was the first to understand Brownian motion as the random
movement of a particle constantly colliding with molecules, and obviously
had nothing against probabilities. What he questioned was the intrinsic
randomness attributed to the quantum wave.

When physicists can afford to suppress the “small components” of the
Dirac wave, just because electron velocity is low and because two of the
complex components then have a small modulus in comparison with the
other two, they not only completely destroy the relativistic invariance of
the wave equation, but also return to the Hamiltonian pattern inhabited by
the Schrödinger and Pauli equations. In that case time plays a different role
in comparison with space, and the equation takes the Hamiltonian form of
the Schrödinger equation iℏ∂tψ = H(ψ). The wave equation obtained by
this suppression is seldom presented as merely a Pauli equation. In the end,
everyone believes that the Dirac equation is “a kind of Schrödinger equa-
tion.” This reduces the Dirac wave to the general probabilistic schema of
nonrelativistic quantum theory: the only things we may calculate are prob-
abilities. And since there is no physical reality beyond what is measurable,
the research of other ideas – the understanding of what actually happens –
are considered useless, and even harmful.

Have we in the present work moved outside this probabilistic schema?
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At first it may seem not, since the quantum wave with spin 1/2 is always
associated with a probability: by dividing the local energy density by the
total energy we naturally arrive at a density whose summation over the
whole space takes the value one. It is thus a probability density. In the
case of several indistinguishable fermions we also obtain a measure which
gives the number of these fermions. But certainly the answer is yes, we
have gone outside the purely probabilistic schema because the wave does
not give only probabilities. In the wave we can find the origin of all the
so-called “quantum numbers” such as the baryon number, lepton number,
weak hypercharge and so on. We are now able to understand the value
of each elementary charge. We are also able to derive the Lorentz law of
motion for the density of electric charge and for other currents. We are able
to understand how electrons essentially differ from neutrinos and quarks.
Thus in the wave with spin 1/2 there are some elements of physical reality
rather than mere probabilities. The quantum wave is not reduced to mere
amplitude and phase.

Certainly a large part of quantum mechanics is reduced to these, that
part in which the phase (thought to be single), which always means the
angle of the electric gauge associated to the probability current, is dominant
and overrides all other currents.

Even in this case – meaning in the realm of QFT, which is indeed vast be-
cause most fermions have an electric charge, but which does not encompass
all physics – the quantum wave follows an equation with partial derivatives
just as deterministic and relativistic as Einstein’s gravitational equations. It
is the extended relativistic invariance which gives the quantization of kinetic
momentum and this explains Heisenberg’s inequalities, which means the lim-
itation of our knowledge about position–energy–momentum (in space-time).
Moreover, among principles that may be consequently derived from proper-
ties of quantum waves is the exclusion principle expounded by Pauli. This
principle states that the occupation number of an electron wave can only be
either 0 or 1. The “probability of presence” concept is thus non-verifiable:
the experimental validation of any probabilistic law is necessarily made via
the convergence of statistical frequencies onto the probability law. And
statistics is impossible with only one object. Statistics based on n electrons
also includes n electron waves. The probability that in a domain of space D
the “electron–particle” is present in D and nowhere else is always calculable
but not statistically verifiable from the wave of this lone electron. The sit-
uation is absolutely different for a photon because an electromagnetic wave
may accommodate myriads of photons. The spatial density of these pho-
tons on the wave is proportional to the magnitude of the electric field; this
is statistically verifiable.

The concept of probability has two kinds of justifications, a priori or a
posteriori. The concept of probability a priori, theorized by Kolmogorov’s
axioms, defines probability as an additive measure on a family of sets such
that the probability of the whole is 1. It is this kind of probability that we
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encounter in the present book. On the contrary, the concept of a posteriori
probability is based on randomness, which means an intervention of causes
of which we know nothing: For instance a uranium-238 atom exists since its
creation, billions of years ago, but suddenly a nucleus of helium is ejected
and the nucleus transforms into a thorium-234 nucleus. We do not know
what happens, how this process begins, or how it evolves. We only know the
end of the process, when the two nuclei separate. Statistics that physicists
carry out on an enormous number of uranium-238 atoms allows them to
establish probabilistic laws. The probability of decay is constant in time.
Its half-life, the duration such that only half of the uranium remains, is
4.4688 billion years. Can this probability be linked to the wave of the
protons, neutrons and electrons of this kind of atom? We do not know.
And QFT does not know either, despite attempts to causally relate the
temporal probability of decay to the nonzero spatial probability of presence
beyond the potential barrier. QFT must obviously justify how a spatial
probability can yield a temporal probability. This has been discussed by
many physicists [101].

Astonishing implications of these probabilities, such as entanglement,
Bell’s inequalities and Aspect’s experiment, are always interpreted with
the idea of a quantum wave following Hamiltonian relativistic dynamics.
This is in the framework of a theory which replaces the necessary definition
of mathematical objects by a set of postulates supposedly universal. But
these postulates are not universal, because waves of different fermions of the
Standard Model have left and right waves. And never was it proved that
these left and right waves would obey the postulates of quantum theory.
What we introduce here, using a wave function of space-time with value in
End(Cl3), can be used to support the mathematical foundations of second
quantization. But problems of Hamiltonian dynamics will remain entirely.

Why were we entitled to doubt the possibility of a Hamiltonian rela-
tivistic dynamics from the spinor wave of the electron? The problem comes
from time, which is revertible in Hamiltonian dynamics and which is not
revertible for the invariance under Cl∗3. Since QFT admits the universal
validity of CPT symmetry along with the violation of P-symmetry and
of CP-symmetry, this is equivalent to the violation of T-symmetry. It is
thus logical to think that the dynamics of fermions in the Standard Model
cannot be Hamiltonian. Moreover, we have explained in Chapter 1 how
the first Hamiltonian form of the Dirac equation is both nonrelativistic and
nonequivalent to the second form of the Dirac equation, which is relativistic.
It is thus false to consider two nonequivalent wave equations as describing
the same particle!

We now have a much stronger reason, knowing that ordinary time is
expressed through the exponential function which applies the Lie algebra
Cl3 on the Cl∗3 group, particularly R onto R+∗: time is oriented by the
structure of the whole space-time. The measurements of space and time
used in the interpretation of Aspect’s experiment and of Bell’s inequalities
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are made in the frame of the space-time of special relativity. All these
measurements should account for the inclusion of space-time in the true
space-time manifold. We explain in 4.6.2 how events which seem to coincide,
as observed in a particular frame, in fact may be in the future of each final
observer.

In the previous discussion of the decay of a uranium atom, and with the
emission of a photon as well, it is essential to understand the all-or-nothing
character of quantum phenomena that is the main feature of quantization.
Surely, for any quantum phenomenon the kinetic momentum comes in in-
teger multiples of ℏ/2. Yet making use of ergodic properties, it is perfectly
possible to link temporal probabilities of seemingly random events, to a
continuous distribution of spatial probabilities. This is of course something
to elaborate on, to account for probabilities used by Einstein for his physics
of light.

5.5 The nearly forgotten Dirac equation

We built upon two parts of Einstein’s scientific work. The first part
of his work was interpreted as the replacement of the invariance group of
Newtonian physics laws by another invariance group called the Poincaré
group, which is 10-dimensional. Relativistic quantum mechanics has re-
placed the restricted Lorentz group by the SL(2,C) group. And this group,
6-dimensional, was extended by us to the GL(2,C) = Cl∗3 group. This
extension is justified by the spin 1/2 of all the fundamental objects of quan-
tum physics: fermions. These are named after Fermi who worked out the
statistics indicated by Pauli’s exclusion principle. Regarding the exclusion
principle, we also went further since it is now linked to the additivity of the
fermion mass-energy, through the orthonormalization of the fermion waves.
This additivity is not an exact law and is only due to the extremely tiny
masses of particles, which makes the nonlinearity of gravitation negligible.

Why was quantum mechanics essentially built from the Schrödinger
equation, when only a few months after this first discovery the Dirac equa-
tion was also available? De Broglie explained how after the 1927 Solvay
Conference, having been appointed professor at the Sorbonne, and aware of
the obstacles to his idea of the wave guiding the particle, he began teaching
the works of the other quantum physicists, not his own theory. He returned
to the ideas of his youth only many years later. Yet a long time prior to
this change, he was already interested in the Dirac equation because the
equation was relativistic, like his initial concept of a wave associated to the
movement of any material particle [53]. But by the time he changed his
mind about the explanatory power of quantum mechanics, the Dirac equa-
tion was already considered outdated, seldom taught. This area of quantum
physics was slowly disappearing from the physics curricula of universities.

Among the reasons for this decline is the great difference introduced by
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the spin 1/2, between what is called a physical quantity in classical physics
and what is called a physical quantity in quantum mechanics. In classical
mechanics the quantities are numbers, for instance a temperature of 302
Kelvin. Other quantities are components of vectors like velocity or force,
where the components are real numbers. Others, slightly more difficult
to understand, are tensors such as the inertia tensor or the electromagnetic
tensor. Still, all these quantities are real numbers. The wave equation found
by Schrödinger, that of Pauli and more so the Dirac equation, all introduced
a deep change: quantum states have no direct link with the quantities of
classical physics. To each classical quantity is associated, everywhere in
quantum mechanics, an operator acting on the linear space of states; and it
is the proper value of this operator which gives the real number of classical
physics. According to this line of reasoning, the ultimate physical reality
of the electromagnetic field comes from creation and annihilation operators
which add or subtract a unity to the number of photons present in the
electromagnetic wave.

On the contrary, we explain in Appendix C how all quantum numbers
of solutions in the hydrogen case are obtained with only the condition of
the normalization of the wave. This does not contradict quantum mechan-
ics, because we may show adequate operators such that each solution is
automatically a proper vector of these operators. Nevertheless, the general
theory of Hermitian operators is simply useless.

De Broglie remarked early on [54] that with the Dirac wave equation it
was still different: certainly the idea of classical numbers as proper values
of operators is conserved, but it is not these quantities that have true rel-
ativistic variance; it is the tensor densities which transform following the
law established for relativistic physics. Several arguments were brought up
against the Dirac wave, one of which is that the matrices used in the wave
equation are only defined up to an arbitrary matrix factor. It is thus diffi-
cult to consider the wave as having any element of physical reality, and the
wave appears to be merely a tool for calculations, nonphysical. We resolved
this difficulty by defining the Dirac matrices from the Pauli matrices in a
unique manner, from the canonical basis of GL(2,C). They are the same for
two observers in relative motion, and thus the wave with spin 1/2 may have
the status of physical reality, in the same way as for instance an electric
field. Some other difficulties are only historical; they were resolved when
the study of the tensors in the theory was improved: Hestenes introduced
new methods of calculation, much more efficient. They allowed him to prove
that the densities of electric charge and of electric current nearly follow the
Lorentz force law 1. Only one other theory derived the laws of motion from
field equations: general relativity. This strongly impressed de Broglie when
Einstein managed to prove the derivation (de Broglie needed this nonlinear-
ity to link his particle to its wave). And we may say that the improved wave

1. Our improved equation gives the Lorentz force exactly, see 1.9.
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equation is even stronger than Einstein’s gravitation equations, which gives
the law of the movement only for a singularity of the field, while the wave
equation of the electron gives the Lorentz force for any solution
of the wave equation.

Another reason for theoretical physics to discountenance the spin 1/2
wave is that the Dirac equation is only a linear equation. Thus its worth
is much less than that of general relativity, which is nonlinear. It is also
only a theory for a single electron, and in an exterior potential which is
nonsense in a field theory. Yet this criticism applies to the Dirac equation
as formulated in 1928, not to our work: the improved equation obtained
in Chapter 1 and its subsequent generalizations in the next chapters are
nonlinear, both in mass terms and in gauge terms where potentials are
dependent on the wave. Algebraic identities suppress the effect of each
chiral current on itself. This eliminates the self-effect, without destroying
the effect. It is seen only if we consider the entire wave altogether and
not merely the different pieces. Furthermore the more useful form of the
fermion wave equation is its invariant form, which is not at all linear. The
wave is a well-defined function of space-time (not configuration space) with
value onto a set of operators acting on themselves. This is the only possible
justification for second quantization.

With Lorentz’ electron-particle model, the mass-energy is the sum over
all space of the energy density of the electromagnetic field. If the electron
should be exactly a point, this energy would be infinite. It the electron
should be extended, the repulsive force due to the electric field of the charge
would be necessarily compensated by other unknown forces. This led us to
separately consider the exterior field created by the other charges. In the
previous chapters the energy density of the electron was no longer the energy
density of the electric field; it was the temporal component of the energy–
momentum density linked to the Lagrangian density of the electron. It was
previously known that the energy density linked to the electromagnetic field
W = 1

2 (E
2+H2) was problematic: the mass of this energy depends on how

energy is defined from the mechanical point of view [8]. We see in Chapter
1 that it is the electromagnetic field itself which is the energy–momentum
tensor. The mass-energy of the electron is exactly the sum of the energy
density of the electron wave. The tensor density of energy–momentum in
quantum physics is linked by Noether’s theorem to the invariance of the
Lagrangian density under space-time translations. Since we only needed
the fermion part of the Lagrangian density of the Standard Model, and
since wave equations of bosons were derived from those of fermions by the
recursion on wave equations, we conclude that we need only the fermion
part of the Lagrangian density.

This part of the Lagrangian density is derived from the wave equations,
and the wave equations are derived from the Lagrangian density. This
suggests that gauge fields have no proper energy. Phenomena where gauge
fields seem to own a proper energy are phenomena where it is always possible
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to reallocate this energy to the fermions that give or receive this energy.
This leads to a first prediction: As strong as a magnetic field may

be around a star (including neutron stars and black holes) or a
galaxy, this field, despite its bipolar and multi-polar structure,
has absolutely zero effect on the geometry of the gravitational
field which can remain perfectly spherical.

5.6 Why those wave equations and not others?

The global wave equation for all fermions of the first generation separates
into 16 equations corresponding to 16 spinors, eight left and eight right,
making up the wave. This splitting is what allows us to distinguish each of
these objects from others. But the separation is only partial: wave equations
are all constructed in the same manner, with a differential part (the only
part of the equation that totally distinguishes parts of the wave), a mass
term and a gauge term. The mass term and the gauge term contain space-
time vectors that are themselves functions of left and right spinors. This
dependence of the gauge and mass terms on spinors reveals that the wave
equation is highly nonlinear.

We again look at the three parts of our wave equation: The whole equa-
tion is constrained by the invariance under the Cl∗3 group that governs the
whole of the Standard Model and gravitation. We consider the homothety
ratio in terms of the dinum (see 1.7) that we use to distinguish contravari-
ance from covariance.

1. Spinors have a dinum 1/2. Partial derivatives acting on them give
terms with dinum −1/2.

2. Thus the other terms must have the same −1/2 dinum. And they
contain a multiplication by the spinor wave function, with +1/2 dinum.
Thus the other factors must together bring a −1 dinum. Therefore a single
spinor factor is inconvenient, and it is impossible to have quadratic terms
with regard to spinors; only cubic terms are possible. These cubic terms
bring a supplementary dinum of +1, not −1, and thus we have a difference
of +2 to compensate.

3. This may be done in only two ways, either bringing a −2 dinum or
bringing two −1 dinums. The first possibility is what the gauge term brings,
where the lone charge (actually g1, g2 and g3 constants) brings a −2 dinum.

4. The second possibility, −2 = −1 − 1 is actually what m/ρ brings
to the mass term because m brings a −1 dinum and 1/ρ also brings a −1
dinum. All in all, there are two, and only two, possible terms in addition to
the differential term because there are exactly two possibilities to express 2
as an ordered sum of integers: 0 + 2 and 1 + 1. Moreover this justifies the
difference between mass and charge, which certainly give both potentials
in 1/r. They are different only from the point of view of the extended
invariance.
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Why do we not obtain derivatives of higher order? This is because
the wave equation Dirac envisioned must have similar partial derivatives
for time and space coordinates: this is required by special relativity. And
it is necessary to only have first-order derivatives so as to obtain a con-
servative probability density. First-order derivatives are also the terms of
the first approximation. In the study of manifolds, by distinguishing the
variation of points and the variation of a mobile basis, it is possible to
avoid the writing of differential terms with higher degrees. It is similar to
the systems of first-order equations that are obtained in mechanics (where
second-order derivatives are natural) when velocities are used as auxiliary
variables. Hence the use of only first-order derivatives does not restrict the
generality of our wave equations. Furthermore the recursion takes place in
the wave equations. Second-order derivatives allow us the definition of the
gauge bosons. And similarly, terms of higher order are included in the rela-
tions linking gauge fields to potentials, and currents to gauge fields. Lastly
the system is closed for another reason: the null dinum of all gauge fields.
Consequently, by multiplying operators acting on these gauge fields we still
obtain such an operator.

The quantum wave gives two connections on the space-time manifold:
a connection linked to the currents of the quantum wave (inertia) and an-
other linked to its invariance group (geometry)(see chapter 4). The identity
of these connections is exactly the equivalence principle between inertia and
gravitation. And the reason for this identity is: the space-time manifold is
a hypersurface of dimension four itself included in the 8-dimensional Cl∗3
Lie group, which is also a manifold. 2 Since the identity directly concerns
the Lagrangian density, it also concerns the energy–momentum. The proper
mass of quantum wave equations is thus a difference between inertial and
gravitational mass, though not noticeable because Avogadro’s number is too
high. This mass is not defined by the particle alone; it is proper to the parti-
cle interacting with a material system great enough to allow measurements.

5.7 Treasure hunt

In the vast “treasure hunt” that is scientific research, it is very easy to
let oneself be rerouted by coincidences, the main reason for believing we
are following the right track when actually the track is already lost. And
there have been several coincidences throughout the history of physics. For
instance the wave equation of the electron was discovered at just the same
time as the spin 1/2, and at the time, there was yet no direct relation.
Another coincidence concerns mathematical tools: the Clifford algebra of
3-dimensional space is also the algebra of complex 2× 2 matrices (but only
as algebras on the real field!). This serves to justify the habit of quantum

2. The equivalence between the identity of the two connections to the equivalence
principle is a true logical equivalence, with double logical implications.
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mechanics to only use functions with value in the complex field. A third
coincidence: the Lie group of rotations in 3-dimensional space has the same
Lie algebra as the group of the 2 × 2 unitary complex matrices, denoted
as SU(2) (but the groups themselves are different!). This gives an addi-
tional justification to the sole use of functions with complex values, and the
primacy of unitary transformations that conserve the probability. These
coincidences, which are accidental from the mathematical point of view, are
reasons that led physicists to consider the theory of operators on quantum
states as a tool that is all at once necessary, sufficient, and impregnable –
but all the while: a false track!

The human spirit always tries to reduce novelties down to what is already
known: it’s our nature. There still are some people today who persist in
restraining the study of electromagnetism to absolute time, which is only
time as perceived by our internal biological clock. In the same manner
the concept of spinors was systematically reinterpreted, distorted, in order
to reduce the new concept to something previously known: tensor physics.
Therefore the novelty of the situation was not received, like the infinite kinds
of tensor densities that may be constructed from spinor waves. Similarly,
only tensor densities which are invariant under the electric gauge have been
considered, as if the electron could not also be affected by weak interactions.

5.8 Physics and mathematics

Mathematics and physics are closely related sciences, both concerned
with quantifying data and integrating them into an orderly body of knowl-
edge. But these two sciences, both extensively developed, are nowadays so
vast that it is impossible for a young scientist to master the whole of physics
or the whole of mathematics and even more to master both domains fully.

Galileo pointed out that the language of physics was mathematics, and
since then, the connection between physics and mathematics has grown
ever closer. But misunderstandings have significantly gotten worse since
the beginning of quantum physics. These misunderstandings, as is often
the case, can in part be ascribed to both parties. The evolution of mathe-
matics towards greater abstraction and generality is natural but ill-adapted
to physicists’ needs: the theory of linear spaces is naturally made with a
general n-dimensional space, but what is interesting for physics is the just
3-dimensional space and the 3+1-dimensional space-time. Only with three
dimensions does a cross-product exist, which is so useful in physics. Prop-
erties specific to a 3-dimensional space (scalar and cross products, curl, and
also the electromagnetic field as a field of energy–momentum densities) do
not interest most mathematicians. The particular properties of the algebra
of the 2 × 2 Pauli matrices, like the fact that the co-matrices are complex
numbers, act only if n = 2. Hence the use of general n-dimensional linear
spaces, so natural in mathematics, is in practice detrimental for physics.
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Physicists are also partly responsible for these misunderstandings. It
is impossible to take advantage of the strength of mathematical results
when their constraints are disregarded: for instance, the necessary definition
of mathematical objects for which the reasoning can be applied, and the
importance of theorems of existence and of impossibility. 3 So it is the Pauli
algebra, 8-dimensional on R, which is important, while anything else seems
to lead the Dirac theory to resort to the use of M4(C) or the subalgebras
Cl1,3 and Cl3,1. It is also necessary to distinguish similar yet nevertheless
different concepts such as a Lie group and a Lie algebra. Quantum theory
was built on the basis of mathematics of the century that preceded its
beginnings. For instance the concept of function was purely computational,
and the questions of limit, of topology and even mere concern for the set of
departure and the set of values, or the usefulness of Clifford algebras: all
this was misunderstood by physicists who were old enough, despite their
remarkable youth, to know only the mathematics of the nineteenth century.
Physicists were even misled by the power of distribution theory, which has
made the use of Fourier and Laplace transformations much more efficient.
Thus when QFT was introduced, most people were quite sure that the
needed theorems would necessarily be soon demonstrated. But the expected
proofs never came: physicists had too much confidence in the power of
mathematics.

5.9 Understanding and predicting

Among the ideas that we now understand better, several were known
for a long time. The existence of Planck’s constant in physics is more
than a century old, and the quantization of kinetic momentum arises from
there. Here we also explain how this constant ratio between energy and
frequency comes from the invariance of quantum laws under Cl∗3. This
invariance emerges from the mathematical structure of the fermionic waves.
And the mathematical structure of the fermion waves in turn comes from
this invariance 4. This is manifested in the equivalence between two forms
of the wave equations, due to the invertible character of each value of the
wave function. Furthermore this equivalence gives rise to the Lagrangian
mechanism. It is an extremal principle: Noether’s theorem associates the

3. In his second book on the Dirac theory ([57] Chapter II, section 2) de Broglie
clearly explained the following impossibility: if we consider three operators mx, my and
mz satisfying anti-commutation relations of 3-dimensional rotations, all possible proper
values of mz are −j,−j+1, . . . , j− 1, j where j(j+1) is proper value of m2

x +m2
y +m2

z ,
and all possible values of j are 0, 1/2, 1, 3/2, 2, 5/2 . . . . But if mx, my and mz are

angular momentum operators (mx = i(y
∂

∂z
− z

∂

∂y
) and so on), the only possible values

of j are 0, 1, 2, 3, . . . . Consequently the operators of the Dirac theory, with values j =
1/2, 3/2, 5/2, . . . are not angular momentum operators! (Thus we named these operators
as “kinetic momentum” operators).

4. This looping causality is the only reason explaining why metaphysics is unnecessary.
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translational invariance of wave equations to the existence of conservative
densities of energy–momentum. This theorem also associates a conservative
kinetic momentum tensor to the invariance under Cl∗3. We consequently
obtain the quantization of kinetic momentum with the expected value ℏ/2.
And since the kinetic momentum is quantized, the Planck constant appears
fixed. The orthonormalization of the wave and the resulting quantization of
the kinetic momentum justify the use of kinetic momentum operators that
give the different states of electrons in atoms.

Pauli’s exclusion principle has also been known for nearly a century. We
relate this principle to the necessary orthonormalization of states in the case
of the electron in an atom. This orthonormalization is itself related to the
additivity of the mass-energy, and hence to the properties of gravitational
sources, since masses of microphysical objects are very small in comparison
with the masses necessary to reveal the nonlinear character of gravitation.
So the energies of the various electrons in an atom are additive. This addi-
tivity of the energy is itself related to the additivity of the gauge potentials.
It is enough to justify that the gravity around a star is proportional to the
total mass of the star, the sum of the masses of all its components. This
is only a linear approximation, legitimate in the case of a low gravitational
field.

We also linked the equivalence principle to this weak-field approxima-
tion, through Lagrangian densities that may be written as the difference
of an inertial part and a gravitational part. Noether’s theorem hence gives
two equal energy–momentum tensors, which thus have the same temporal
component. By integrating over space we thus obtain the equality between
inertial mass and gravitational mass. This was the starting point of Ein-
stein’s general relativity.

The inclusion of the space-time manifold into the Lie group Cl∗3 explains
the homogeneity and isotropy of our space-time: in a Lie group, the vicinity
of any element of the group is similar to the vicinity of the neutral element.
This is largely established from the experimental point of view, where the
cosmic background radiation is still today very close to homogeneity (one
part in 105). Moreover the geometry of the physical space naturally tends
to infinity (like that of R3) if the relative manifold of the x is linked to the
invariant manifold of X by x = ϕXϕ†.

5.10 Falsifiability

Any scientific theory must be falsifiable: it should be possible to prove
that the theory is false. Conversely it is impossible to prove definitively that
the theory is true. Hence this can only humble the authors of this work.
Will the best theory someday completely do without the Dirac equation
in understanding the properties of electrons, neutrinos, quarks and other
“particles”? Even if the Dirac equation gives all known results for electrons
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in atoms, we proved that it is possible to get the same results from another
point of departure [34].

From Fermat’s principle through to Lagrangian mechanics and up to
the Standard Model, the whole of physical theory has been developed from
an extremal principle. Is this principle fundamental in physics? The an-
swer that we gave in 2.3.4 is clearly: No! We detailed how the algebraic
structure of Cl∗3 gives the double logical link between the wave equation
and Lagrangian density. Thus the extremal principle is not fundamental,
though it is very efficient because the invariance of a Lagrangian density
gives, through Noether’s theorem, conservative quantities. And that which
conserves, which is stable, is much easier to understand than that which is
furtive, unstable, changing, unpredictable. Furthermore the extremal prin-
ciple is the reason for the unity of all matter-energy, because each fermion
contributes to this energy–momentum tensor, whose temporal component
gives the energy of matter. In addition, the electromagnetic field itself is
this energy–momentum. Moreover only fermions contribute; photons only
transport the energy–momentum between two fermions. Nevertheless in a
regime dominated by gravitation there is no longer a Lagrangian formalism
(see 4.3) and thus no laws of conservation.

The great debate of quantum physics was around the question: what is
the quantum object? A particle? (A very small object, even an infinitely
small point?) A wave? A wave and a particle, as de Broglie thought?
Any phenomenon in quantum physics that is adequately described with
particles can also be adequately described with waves, and conversely. And
it is also possible to describe the same phenomenon with objects that are
both waves and particles [94]. Here we began from the Dirac wave. And
we even claimed: an electron is an orthonormalized quantum wave. Is the
electron also a point object? Nothing forbids this! It is possible that our
orthonormalized quantum waves may include singularities, or even must
include singularities. To ascertain this it will be necessary to solve the wave
equations, study the solutions carefully, and understand in particular the
emission and absorption of photons and of the other bosons. Note also
that the solutions calculated, among which are our solutions for an electron
in a hydrogen atom, may be qualified as “solitons”: the appearance of the
radial functions means that these solutions are similar to solitons. Their
linear approximations are completely stable, definitely. Their “loneliness” is
simply less visible because these waves are not separated in ordinary space,
but orthogonal for a scalar product concerning the Cl∗3 manifold where our
space-time is only a 4-dimensional submanifold.

The great debate began at a time when only one elementary particle
was really known: the electron. Moreover the wave of the electron is not
elementary but double, made of a left and a right wave. Other particles
known in the early years of nuclear physics – protons and neutrons – are no
longer considered elementary since they are made of three quarks.

We are very far from a complete exploration of all the consequences
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of the extension of the invariance group. Consider once more a common
phenomenon like the transition of an electron of the solar photosphere from
one energy state to another, followed by the travel of a photon to our eye
and its absorption by an electron in our retina. We interpret this chain of
events by attributing an electromagnetic wave to the photon. This allows
us to neglect both the emitting electron and the receiving electron during
the transport. But the duration of this transport, from the point of view of
the photon, is exactly null. We might as well describe the event as follows:
the electron wave in the photosphere produces a energy–momentum tensor
which is also the electromagnetic field that propagates towards an electron
in our retina, giving a direct interaction of two fermion waves, that of an
electron in the Sun and that of an electron in the retina.

A great number of things remain to be understood. To give the wave
equations of the quarks is only a first step. It will also be necessary to know
how to calculate magnetic moments of the proton and the neutron, and to
study what new equations would allow nuclear physicists to understand.
And it may happen that many other consequences exist which we did not
even think of.

What we already obtained fully justifies the extension of the invariance
group from SL(2,C) into Cl∗3. Without this extension there is nei-
ther quantization of the kinetic momentum, nor the double pres-
ence of the chiral invariance both in the gauge symmetries and in
the geometry of gravitation. Without this extension physics can
understand neither the reason for the existence of the neutrino–
monopole, nor the values for the electric charge of leptons and
quarks of each generation of the Standard Model, nor the speci-
ficity of gauge fields: their dinum is null, they are sensible only to the part
containing Lorentz transformations of the similitude group. The products
of such fields also have a null dinum, and themselves behave as gauge fields:
this makes possible the construction of creation and annihilation operators.

In metrology, physicists are nowadays working to replace the old Stan-
dard Kilogram by this standard of action which is the Planck constant.
This is perfectly compatible with the extended invariance: when a simili-
tude multiplies all lengths by r, the length of all standard meters are also
multiplied by r. Thus the physicist who always locally measures only the
ratio between the length of the measured object and the length of the stan-
dard meter cannot see the homothety. We may say the same thing for
proper masses or for actions, replacing only r with r3 and r4 respectively.
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Epilogue

Thank you for your patience! This book is the result of thirty years of
hard work. We present the following as a recap of the most salient features
of this work. We introduced five novelties:

1. The natural mathematical framework of the quantum wave is the Cl3
algebra (instead of space-time algebra); it is enough to describe both the
quantum wave and the space-time manifold.

2. The invariance group (form invariance which in quantum physics replaces
the Lorentz group of special relativity), is extended from SL(2,C) to the
GL(2,C) = Cl∗3 group.

3. The linear Dirac equation is replaced by our improved (and nonlinear)
wave equation, obtained by simplifying the mass term of the Lagrangian
density.

4. Space-time is not the starting point, but it is a consequence of the field
of values of the fermion waves.

5. The space-time manifold is included in Cl∗3 (invariance group of all
physical laws) as its auto-adjoint part.

The calculations with Cl3 are much simpler than those with 4×4 complex
matrices. The first yield of these simplifications is a better understanding:

1. Why there is an extremal principle in quantum mechanics.

2. Why there is an equivalence principle in general relativity.

3. Why there is the double equality E = mc2 = hν (Einstein’s relation and
existence of the quantum of action).

4. Why there is the quantization of electric charges and action.

5. Why there is the maximal violation of parity in weak interactions.

6. Why there is the spin 1/2 and not integer values for angular momentum
operators.

7. Where the exclusion principle comes from.

209
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8. Why this kind of wave equations and how these equations can be linked
to the geometry of space-time.

9. What charge conjugation is and how the puzzle of the negative energies
is solved.

10. How the fermion part and the boson part of the standard model are
connected.

11. Why the baryonic number is conserved.

12. Why all leptons are insensitive to strong interactions.

All these results are obtained without any metaphysical principle. By en-
larging the linear space of values of the quantum wave to Cl3,3, the fermion
wave integrates most of the novelties introduced by the Standard Model:

1. The existence of exactly two quarks with three color states, for each
generation.

2. The linked existence of three generations and of charge conjugation.

3. The gauge invariance under the U(1) × SU(2) × SU(3) group of the
Standard Model, and the impossibility of a greater gauge group.

4. The distinction between leptons insensitive to strong interactions and
quarks linked by strong interactions with color. For the lepton sector the
existence of one particle with an electric charge and of one magnetic charge,
the magnetic-monopole–neutrino with a total of four waves linked to the
four kinds of representations of the Cl∗3 group. The neutrino with a right
and a left wave, and Lochak’s magnetic monopole are the same object.

5. For quarks the existence of twelve elementary waves, three for each of
the four kinds of representations of Cl∗3, with six of these waves, three left
and three right, forming the three quarks of a proton or of a neutron.

6. The quantization of kinetic momentum with the value ℏ/2 for each ele-
mentary particle (it is precisely for this reason that they may be considered
particles), namely: the proton, neutron, electron and neutrino. This ex-
plains the confinement of the quarks in protons and neutrons.

7. The magnitude of the electric charges of all particles (electrons, neutrinos,
quarks...) and of their antiparticles.

8. The origin of the preference for left waves (see 3.8). The inclusion of Cl3
into End(Cl3) also explains why the electron wave in second quantization
can account for all results given by its wave of first quantization.

9. About the geometry of space-time, we also resolve the ambiguity of the
signature of space-time in special relativity. Since the quadratic form giving
the space-time metric comes from the determinant in (1.31), the signature
is necessarily + − − −.
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10. The equivalence between wave equations in the usual form and wave
equations in the completely invariant form requires the cancellation of the
X term in 4.3.

11. The existence in the electromagnetic field of quanta of energy–momentum
(photons), because the electromagnetic field is made of components of the
energy–momentum densities of the fermion field.

12. The existence in quantum physics of a probability density and the
necessity to normalize the quantum wave. This results from the equivalence
principle between gravitation and inertia.

The inclusion of the space-time manifold into the Cl∗3 Lie group brings:

1. The geometric origin of the arrow of time.

2. A better understanding of non-simultaneity in optics.

3. A mainly geometric origin for the expansion of the universe, and its
recent acceleration.

All this work could not have even begun without the creation, by Louis
de Broglie himself, of a free foundation with the aim of continuing his physics
research. The head of this “Fondation Louis de Broglie” was Georges Lochak
(1931-2021), who discovered the leptonic magnetic monopole, which is the
starting point of our work.

If you have questions or comments you may use our email addresses.

The path is arduous, but Louis de Broglie declared the necessity of both
freedom and imagination "Pour l’avenir."
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Appendix A

Clifford algebras

We present what a Clifford algebra is. We study the algebra
of the Euclidean plane and the algebra of 3-dimensional space.
This algebra is also generated by Pauli matrices. We include here
space-time and relativistic invariance. We study different tensor
densities of the electron wave. We prove identities necessary to
obtain the form invariance. We study left and right currents,
potential vectors and the electromagnetic field.

Clifford algebra is a useful tool: the physics of light, of gravitation,
and quantum physics need waves; thus they need trigonometric functions.
Trigonometry is highly simplified with the use of the exponential function.
This exponential function needs a product. The addition of vectors is not
enough, a multiplication is necessary: we must be able to use both addition
and multiplication of vectors. Mathematics provides the structure of alge-
bra. Here we present this algebra at a level of minimal difficulty. As this
is a presentation for physics needs, we expect our pedagogical decision to
be met with some criticism from mathematicians. For instance we choose
to speak only about real Clifford algebras, though algebras on the complex
field also exist. We might think that they ought to be essential in quantum
physics since the most frequently used Clifford algebra is also a complex
algebra. But it is actually its structure as a real algebra which is useful in
quantum physics 1 . We may also consider that it is not the algebra which is
important but only the ring structure, and even only the multiplicative Lie
group structure. The presentation here is intentionally made for beginners,
not for theorists of Lie groups.

1. A real Clifford algebra has vectors whose components are real numbers and which
are never multiplied by i. A complex Clifford algebra has vectors whose components are
complex numbers which may be multiplied by i. You can also refer to Doran and Lasenby
[63], which is more oriented towards space-time algebra.
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A.1 What is a Clifford algebra?
1. It is an algebra [9][23], and there are two operations: an addition

denoted by A + B and a multiplication denoted by AB, such that for any
A, B, C:

A+ (B + C) = (A+B) + C ; A+B = B +A,

A+ 0 = A ; A+ (−A) = 0, (A.1)
A(B + C) = AB +AC ; (A+B)C = AC +BC,

A(BC) = (AB)C.

This last equality (associativity of multiplication) allows us to suppress
parentheses. The product is thus simply denoted as ABC.

2. The algebra contains a set of vectors, denoted with arrows, in which
a scalar product exists and the Clifford multiplication u⃗v⃗ is supposed to
satisfy for any vector u⃗ the identity:

u⃗u⃗ = u⃗ · u⃗. (A.2)

where u⃗ · v⃗ points out the scalar product 2 of these vectors. This implies,
since u⃗ · u⃗ is a real number, that the algebra which contains the vectors also
contains the real numbers.

3. Real numbers commute with any member of the algebra: if a is a real
number and if A is any element in the algebra:

aA = Aa, (A.6)
1A = A. (A.7)

These algebras exist for any finite-dimensional linear space. The smallest
algebra is unique, up to an isomorphism.

Relations (A.1) and (A.7) imply that the algebra is also a linear space
which must be distinguished from the initial linear space. If we start from
an n-dimensional linear space the dimension of the algebra is 2n. We will
see for instance in A.3 that the algebra of the usual space, 3-dimensional,
is an 8-dimensional linear space.

It is useless to distinguish left and right linear spaces, because real num-
bers commute with anything. It is also needless to consider the multiplica-
tion by a real number as a third operation since it is a particular case of
the Clifford multiplication.

2. The scalar product satisfies, for any vectors u⃗, v⃗, w⃗ and any real number a:

u⃗ · v⃗ = v⃗ · u⃗, (A.3)
(au⃗) · v⃗ = a(u⃗ · v⃗), (A.4)

(u⃗+ v⃗) · w⃗ = (u⃗ · w⃗) + (v⃗ · w⃗). (A.5)

We recall also that the scalar product of two vectors is the product of the lengths of these
vectors by the cosine of the angle that they form.
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If u⃗ and v⃗ are two orthogonal vectors (this means if u⃗·v⃗ = 0) the equality
(u⃗+ v⃗) · (u⃗+ v⃗) = (u⃗+ v⃗)(u⃗+ v⃗) implies

u⃗ · u⃗+ u⃗ · v⃗ + v⃗ · u⃗+ v⃗ · v⃗ = u⃗u⃗+ u⃗v⃗ + v⃗u⃗+ v⃗v⃗,

thus we have:
0 = u⃗v⃗ + v⃗u⃗ ; v⃗u⃗ = −u⃗v⃗. (A.8)

This is the major difference compared to usual rules of calculation with
numbers: the multiplication is not commutative and anyone must be as
cautious as for matrix calculus. It is moreover always possible to perform
all calculations using an algebra of squared matrices. The addition is defined
in the whole algebra, which contains both numbers and vectors. Then we
will get sums of numbers and vectors: 3 + 5⃗i is authorized. This may
perhaps seem strange or disturbing, but it is not any different from 3+5i and
everyone using complex numbers finally gets used to it. The two following
definitions are important and general:

Even subalgebra: The even subalgebra is the subalgebra generated by
all products of an even number of vectors: : u⃗v⃗, e⃗1e⃗2e⃗3e⃗4, and so on.

Reversion: The reversion A 7→ Ã changes the order of products. Re-
version does not change numbers a nor vectors: ã = a, ˜⃗u = u⃗, and we get,
for any u⃗ and v⃗, or A and B:

˜⃗uv⃗ = v⃗u⃗ ; ÃB = B̃Ã ; Ã+B = Ã+ B̃. (A.9)

A.2 Clifford algebra of a Euclidean plane

The algebra of the Euclidean plane Cl2 contains all real numbers and all
vectors of an Euclidean plane, u⃗ = xe⃗1 + ye⃗2, where e⃗1 and e⃗2 form a direct
orthonormal basis of the plane: this means that they are two vectors with
length 1, orthogonal to each other; they satisfy: e⃗1 2 = e⃗2

2 = 1, e⃗1 · e⃗2 = 0.
Usually we let: i := e⃗1e⃗2. The general element of the algebra of the plane
is expressed as:

A = a+ xe⃗1 + ye⃗2 + be⃗1e⃗2 = a+ xe⃗1 + ye⃗2 + ib, (A.10)

where a, x, y and b are real numbers. This is enough because:

e⃗1i = e⃗1(e⃗1e⃗2) = (e⃗1e⃗1)e⃗2 = 1e⃗2 = e⃗2,

e⃗2i = −e⃗1 ; ie⃗2 = e⃗1 ; ie⃗1 = −e⃗2,
i2 = ii = i(e⃗1e⃗2) = (ie⃗1)e⃗2 = −e⃗2e⃗2 = −1. (A.11)

We have two remarks:
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1. The even subalgebra Cl+2 is the set formed by all a+ ib; thus it is the
complex field. This subalgebra is commutative. We can say that complex
numbers are underlying as soon as the dimension of the linear space is
greater than one.

2. Here the reversion is the complex conjugate ĩ = ˜⃗e1e⃗2 = e⃗2e⃗1 = −i
We thus obtain, for any u⃗ and any v⃗ in the plane: u⃗v⃗ = u⃗ · v⃗+ idet(u⃗, v⃗)

where det(u⃗, v⃗) is the determinant of two vectors in the (e⃗1, e⃗2) basis.
To establish that (u⃗ · v⃗)2+[det(u⃗, v⃗)]2 = u⃗ 2v⃗ 2, it is possible to use u⃗v⃗v⃗u⃗

which may be calculated in two ways, and we recall that v⃗v⃗ is a real number,
which thus commutes with anything in the algebra.

A.3 Clifford algebra of 3-dimensional space

The dimension 3 of the usual space is the main reason for the signifi-
cance of this algebra. We explain in Chapter 1 why other reasons exist for
preferring this framework for quantum physics.

The algebra, denoted as Cl3, contains [3] all real numbers and all vectors
of the geometry of space which read:

u⃗ = x1e⃗1 + x2e⃗2 + x3e⃗3 =: xj e⃗j , (A.12)

where x1, x2, x3 are real numbers and e⃗1, e⃗2, e⃗3 form an orthonormal basis.
The second equality is the usual Einstein summation convention, with Latin
indices from 1 to 3. The scalar product satisfies:

e⃗1 · e⃗2 = e⃗2 · e⃗3 = e⃗3 · e⃗1 = 0 ; e⃗1
2 = e⃗2

2 = e⃗3
2 = 1. (A.13)

We let:

i1 = e⃗2e⃗3 ; i2 = e⃗3e⃗1 ; i3 = e⃗1e⃗2 ; i = e⃗1e⃗2e⃗3. (A.14)

This gives:

i21 = i22 = i23 = i2 = −1, (A.15)
iu⃗ = u⃗i ; ie⃗j = ij , j = 1, 2, 3. (A.16)

In the calculation of squares we may use the method of (A.11). To obtain the
commutation of i with all vectors we may begin to prove that i commutes
with each e⃗j . General element in Cl3 is: A = a+ u⃗+ iv⃗ + ib. For Cl3 this
gives 1 + 3 + 3 + 1 = 8 = 23 dimensions. We have five remarks:

1. The center of Cl3 is the set of the a + ib terms. They are the only
elements commuting with all the others in the algebra. It is the complex
field: C. This is the main reason for the important role of complex numbers
in quantum physics. If n is even, the center of a real Clifford algebra is only
the real field. The larger center, in Cl3, has many consequences.
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2. The even subalgebra Cl+3 is the set of a + iv⃗ which is isomorphic to
the quaternion field. Using the quaternion field we automatically use the
Cl3 algebra which is sometimes called algebra of the biquaternions.

3. Ã = a+ u⃗− iv⃗− ib: The reversion is the conjugation for the complex
field and also for quaternions in Cl+3 .

4. The iv⃗ term is usually called an axial vector or pseudovector, while
u⃗ is the true vector or (in short) vector. It is well known that this situation
is proper to the dimension 3.

5. Four different and independent terms with square −1 exist: four
different ways to get complex numbers. Nonrelativistic quantum theory
which always uses a unique term with square −1, is analogous to plane
geometry (2D software). What physics actually needs is 3-dimensional space
and thus Cl3 algebra (3D software).

A.3.1 Vector product, orientation
Reminder: Given vectors u⃗ and v⃗, the vector product u⃗× v⃗ is the vector

orthogonal to u⃗ and to v⃗, with a length equal to the product of the lengths
of u⃗ and v⃗ by the sine of their angle, and such that the basis (u⃗, v⃗, u⃗ × v⃗)
is direct. Using coordinates in the basis (e⃗1, e⃗2, e⃗3), it is easy to prove, for
any u⃗ and v⃗:

u⃗v⃗ = u⃗ · v⃗ + i u⃗× v⃗, (A.17)

(u⃗ · v⃗)2 + (u⃗× v⃗)2 = u⃗ 2v⃗ 2. (A.18)

From (A.17) we deduce:

u⃗ · v⃗ =
1

2
(u⃗v⃗ + v⃗u⃗); u⃗× v⃗ =

1

2i
(u⃗v⃗ − v⃗u⃗). (A.19)

Dividing (A.18) by the right term, and taking θ to be a measure of the angle
(u⃗, v⃗), we get:

1 =
(u⃗ · v⃗)2

(∥ u⃗ ∥ ∥ v⃗ ∥)2
+

(u⃗× v⃗)2

(∥ u⃗ ∥ ∥ v⃗ ∥)2
= cos2(θ) +

( u⃗× v⃗

∥ u⃗ ∥ ∥ v⃗ ∥

)2
,

u⃗× v⃗

∥ u⃗ ∥ ∥ v⃗ ∥
=
√
1− cos2(θ) = | sin(θ)|, (A.20)

∥ u⃗× v⃗ ∥ =∥ u⃗ ∥ ∥ v⃗ ∥ | sin(θ)|. (A.21)

Next det(u⃗, v⃗, w⃗) refers to the determinant whose columns contain the co-
ordinates of the vectors u⃗, v⃗, w⃗, in the basis (e⃗1, e⃗2, e⃗3). Using these coor-
dinates again it is possible to prove, for any u⃗, v⃗, w⃗:

u⃗ · (v⃗ × w⃗) = det(u⃗, v⃗, w⃗), (A.22)
u⃗× (v⃗ × w⃗) = (w⃗ · u⃗)v⃗ − (u⃗ · v⃗)w⃗, (A.23)

u⃗v⃗w⃗ = idet(u⃗, v⃗, w⃗) + (v⃗ · w⃗)u⃗− (w⃗ · u⃗)v⃗ + (u⃗ · v⃗)w⃗. (A.24)
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From the mixed product (A.22) we deduce that u⃗× v⃗ is orthogonal to u⃗ and
to v⃗. The determinant (A.22) gives the orientation. We recall that a basis
(u⃗, v⃗, w⃗) is said to be direct (to have the same orientation as (e⃗1, e⃗2, e⃗3)) if
det(u⃗, v⃗, w⃗) > 0, and is said to be inverse (to have the contrary orientation)
if det(u⃗, v⃗, w⃗) < 0. The rule (A.24) allows us to establish that, B = (u⃗, v⃗, w⃗)
being any orthonormal basis, then u⃗v⃗w⃗ = i if and only if B is direct, and
u⃗v⃗w⃗ = −i if and only if B is inverse. In the case where u⃗v⃗w⃗ = i we also
have:

w⃗ = u⃗× v⃗; u⃗ = v⃗ × w⃗; v⃗ = w⃗ × u⃗. (A.25)

On the contrary, with the other orientation where u⃗v⃗w⃗ = −i, we have:

w⃗ = v⃗ × u⃗; u⃗ = w⃗ × v⃗; v⃗ = u⃗× w⃗. (A.26)

Therefore i is fully linked to the orientation of space. Changing i into −i is
equivalent to changing the space orientation. The fact that i determines the
space orientation plays an essential role in the physics of magnetism and of
weak interactions.

All calculations in Cl3 result from the sum (where we add numbers
to numbers, vectors to vectors and so on) and the product (product of
two numbers, product of a number and a vector, product of two or three
vectors), through the scalar product, the vector product and the mixed
product, all well known to physicists and engineers. In Cl3 algebra there
are no mysteries nor undue complications. This should be taught in any
technical university.

A.3.2 Pauli algebra

This algebra, introduced in physics as early as 1926 to account for the
spin 1/2 of the electron, is the algebra M2(C) formed by 2 × 2 complex
matrices. It is equal – isomorphic, to be precise – to Cl3, but only as an
algebra on the real field 3 . Identifying the complex numbers with the scalar
matrices, and the basis vectors ej with the Pauli matrices σj is enough to
determine this identification 4 . And it is fully compatible with our previous
calculations because:

σ1σ2σ3 =

(
i 0
0 i

)
= i, (A.27)

σ1σ2 = iσ3 ; σ2σ3 = iσ1 ; σ3σ1 = iσ2. (A.28)

3. Pauli algebra has a dimensionality of 8 on the real field, and only 4 on the complex
field.

4. The identifying process may be considered a lack of rigor, but in fact it is frequent
in mathematics. The same process allows us to include integer numbers into relative
numbers, or real numbers into complex numbers. To do without this process results in
very complicated notations. This process considers (σ1, σ2, σ3) as a direct basis in the
usual space.
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Consequently the reverse is identical to the adjoint (transposed conjugate
matrix):

Ã = A† = (A∗)t. (A.29)
We will thus refer to this algebra as either Cl3 or the Pauli algebra. Some
Cliffordians who did not understand the concept of isomorphism refuse to
use matrix calculus. As for physicists, who have the habit of using Pauli
algebra with complicated older notations, the full use of Cl3 simply brings
simplifications to their calculations, without changing their results.

A.3.3 Three conjugations are useful
A = a+u⃗+iv⃗+ib is the sum of the even element A1 = a+iv⃗ (quaternion)

and of the odd part A2 = u⃗+ib. We define the P conjugation (called “parity”
in quantum physics) such that:

P : A 7→ Â; Â = A1 −A2 = a− u⃗+ iv⃗ − ib. (A.30)

For any elements A and B in Cl3 this conjugation satisfies:

Â+B = Â+ B̂ ; ÂB = ÂB̂. (A.31)

P is the main automorphism of the algebra. Any Clifford algebra possesses
a similar involutive (meaning: PP is the identity) automorphism. From
this conjugation and from the reversion, we can define a third conjugation:

A = Â† = a− u⃗− iv⃗ + ib : A+B = A+B ; AB = B A. (A.32)

The composition, in any order, of two among these three conjugations gives
the third one. Only P conserves the order of the products, while A 7→ A
and A 7→ A† inverse the order of the factors. Now a, b, c, d being any
complex numbers and a = a∗ the conjugate complex 5 of a, we can prove

that for any A =

(
a b
c d

)
of the Pauli algebra 6 we have:

Ã = A† =

(
a∗ c∗

b∗ d∗

)
; Â =

(
d∗ −c∗
−b∗ a∗

)
; A =

(
d −b
−c a

)
,

(A.33)

AA = AA = det(A) = ad− bc ; ÂA† = A†Â = [det(A)]∗; A+A = tr(A).

If det(A) ̸= 0 we then get:

[det(A)]−1AA = 1 =

(
1 0
0 1

)
; A−1 = [det(A)]−1A. (A.34)

5. The notation a for the conjugate is today the only notation used in mathematics,
though the notation a∗ was commonly used in course books for quantum physics. Thus
we allow ourselves the use of either notation when it is clear that there can be no confusion
due to A = Â†.

6. The equality AA = AA is general in Cl3. The equality AA = det(A) uses the
identification between real numbers and scalar matrices, which means the inclusion of
the real numbers in the Clifford algebra.
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A.3.4 Gradient, divergence and curl
In Cl3 we use the differential operator:

∂⃗ = e⃗1∂1 + e⃗2∂2 + e⃗3∂3 =

(
∂3 ∂1 − i∂2

∂1 + i∂2 −∂3

)
, (A.35)

with 7 :
x⃗ = x1e⃗1 + x2e⃗2 + x3e⃗3 ; ∂j =

∂

∂xj
. (A.36)

The Laplacian is simply the square of ∂⃗ :

∆ = (∂1)
2 + (∂2)

2 + (∂3)
2 = ∂⃗∂⃗. (A.37)

When applied to a scalar, ∂⃗a is the gradient of a, and when applied to a
vector u⃗ we get both the divergence and the curl:

∂⃗a = ⃗grad a = (∂1a)σ1 + (∂2a)σ2 + (∂3a)σ3, (A.38)

∂⃗u⃗ = ∂⃗ · u⃗+ i ∂⃗ × u⃗; ∂⃗ · u⃗ = divu⃗ = ∂1u
1 + ∂2u

2 + ∂3u
3, (A.39)

∂⃗ × u⃗ = curl(u⃗) = (∂2u
3 − ∂3u

2)σ1 + (∂3u
1 − ∂1u

3)σ2 + (∂1u
2 − ∂2u

1)σ3.

Thus, for any function with a scalar value a = a(x⃗) and for any function
with a vector value v⃗ = v⃗(x⃗) we have:

∂⃗(∂⃗a) = (∂⃗∂⃗)a = ∆a; ∂⃗(∂⃗v⃗) = (∂⃗∂⃗)v⃗ = ∆v⃗, (A.40)

∂⃗ · (∂⃗ × v⃗) = 0; ∂⃗ × (∂⃗a) = 0, (A.41)

∂⃗ × (∂⃗ × v⃗) = ∂⃗(∂⃗ · v⃗)−∆v⃗. (A.42)

A.3.5 Space-time in the Pauli algebra
This surprising inclusion was made as soon as Dirac derived his wave

equation (1928):

x = xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
; σ0 = σ0 = I; x0 = ct, (A.43)

where c is the speed of light and t is time. Any element M of the Pauli
algebra is sum of a vector v and of the product of a second vector w by i:

M = v + iw; v =
1

2
(M +M†) ; v† = v (A.44)

iw =
1

2
(M −M†) ; w† = w. (A.45)

7. This operator ∂⃗ is usually denoted in quantum mechanics as a scalar product, for
instance σ⃗ · ∇⃗. From there results much confusion. Simple notations are very useful for
optimizing calculations.
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These two space-time vectors v and w are unique. Since x = x†, space-time
is the set of M = v + iw such that w = 0. We call this set the self-adjoint
part of Cl3. In this framework we need two differential operators:

∇ = ∂0 − ∂⃗ ; ∇̂ = ∂0 + ∂⃗. (A.46)

They allow us to calculate the D’Alembertian:

∇∇̂ = ∇̂∇ = (∂0)
2 − (∂1)

2 − (∂2)
2 − (∂3)

2 =: □. (A.47)

The main reason for the use of Cl3 is in these equations, which means
that the D’Alembertian includes the P transformation M 7→ M̂ . (We see
its implications in Chapter 1). Let A and B be two space-time vectors:
A = A0 + A⃗, B = B0 + B⃗. The scalar product in space-time A ·B is:

A ·B =
1

2
(AB̂ +BÂ) =

1

2
(ÂB + B̂A). (A.48)

We indeed have:

AB̂ +BÂ = (A0 + A⃗)(B0 − B⃗) + (B0 + B⃗)(A0 − A⃗)

= A0B0 −A0B⃗ +B0A⃗− A⃗B⃗ +A0B0 +A0B⃗ −B0A⃗− B⃗A⃗

= 2(A0B0 − A⃗ · B⃗) = 2A ·B, (A.49)

ÂB + B̂A =
̂

AB̂ +BÂ = 2̂A ·B = 2A ·B. (A.50)

A.3.6 Laws of electromagnetism with Cl3

The simplest framework to express the complicated laws of electromag-
netism is also Cl3: We call A = A† a space-time vector “potential” and we
calculate, with the Dirac operator ∇ = σµ∂µ = ∇†, as well as A = A0 + A⃗,
the electromagnetic field F = E⃗ + iH⃗ associated to this potential. It is
purely a 2-vector in space-time, the sum of the electric field E⃗ and the
magnetic field iH⃗, an axial vector. The derivation of the potential A gives:

E⃗ + iH⃗ = F = ∇Â = (∂0 − ∂⃗)(A0 − A⃗) = ∂0A
0 − ∂0A⃗− ∂⃗A0 + ∂⃗A⃗

= (∂0A
0 + ∂⃗ · A⃗) + (−∂0A⃗− ∂⃗A0) + i∂⃗ × A⃗,

E⃗ = −∂0A⃗− ∂⃗A0; H⃗ = ∂⃗ × A⃗. (A.51)

Thus we have obtained a bivector F , sum of only a vector E⃗ and of a
pseudovector iH⃗, if and only if the Lorentz gauge condition 0 = ∂0A

0+ ∂⃗ ·A⃗
is satisfied. We also have:

F = (∂0A
0 + ∂⃗ · A⃗)− (−∂0A⃗− ∂⃗A0)− i∂⃗ × A⃗,

F − F = 2[(−∂0A⃗− ∂⃗A0) + i∂⃗ × A⃗] = 2(E⃗ + iH⃗) = 2F. (A.52)
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We thus let:

F := E⃗ + iH⃗ :=
1

2
(∇Â−∇Â) = 1

2
(∇Â−A†∇). (A.53)

This implies:

F̂ = −F † = −E⃗ + iH⃗ =
1

2
(∇̂A− Â∇). (A.54)

∇F̂ =
1

2
(∇∇̂A−∇Â∇) =

1

2
(□A−∇Â∇), (A.55)

□ := ∇∇̂ = (∂0 − ∂⃗)(∂0 + ∂⃗) = ∂0∂0 − ∂⃗∂⃗

= ∂0∂0 − ∂1∂1 − ∂2∂2 − ∂3∂3 = ∇̂∇. (A.56)

Moreover, we obtain:

∇F̂ = ∇(∇̂A) = (∇∇̂)A = □A = A□, (A.57)

(∇F̂ )† = 1

2
(∇∇̂A−∇Â∇)† =

1

2
(□A−∇Â∇)†

=
1

2
(A□−∇Â∇) =

1

2
(□A−∇Â∇) = ∇F̂ . (A.58)

Therefore j = ∇F̂ is also a space-time covariant vector, called a “current”.
We also have:

j = j0 − j⃗ = ∇F̂ = (∂0 − ∂⃗)(−E⃗ + iH⃗) (A.59)

= ∂⃗ · E⃗ + (−∂0E⃗ + ∂⃗ × H⃗) + i(∂0H⃗ + ∂⃗ × E⃗)− i∂⃗ · H⃗. (A.60)

Separating the scalar, vector, pseudovector and pseudoscalar part, we obtain
Maxwell’s equations:

j0 = ∂⃗ · E⃗, (A.61)

j⃗ = ∂0E⃗ − ∂⃗ × H⃗, (A.62)

0 = ∂0H⃗ + ∂⃗ × E⃗, (A.63)

0 = ∂⃗ · H⃗. (A.64)

We also have:

−∇Â∇ = (E⃗ + iH⃗)(−∂0 + ∂⃗)

= ∂⃗ · E⃗ + (−∂0E⃗ + ∂⃗ × H⃗)− i(∂0H⃗ + ∂⃗ × E⃗) + i∂⃗ · H⃗

= ∂⃗ · E⃗ − (∂0E⃗ − ∂⃗ × H⃗) = j = ∇F̂ = □A. (A.65)

Another form of electromagnetism exists when A = A† (space-time vec-
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tor) is replaced by iB = −iB† (space-time pseudovector):

E⃗m + iH⃗m = Fm = ∇îB = −i∇B̂

= −i[(∂0 − ∂⃗)(B0 − B⃗)] = −i[∂0B0 − ∂0B⃗ − ∂⃗B0 + ∂⃗B⃗]

= −i(∂0B0 + ∂⃗ · B⃗)− i(−∂0B⃗ − ∂⃗B0) + ∂⃗ × B⃗

H⃗m = ∂0B⃗ + ∂⃗B0; E⃗m = ∂⃗ × B⃗. (A.66)

Thus we have also obtained a bivector Fm, the sum of a vector E⃗m and of
a pseudovector iH⃗m, if and only if the gauge condition 0 = ∂0B

0 + ∂⃗ · B⃗ is
satisfied. We also have:

−iB∇̂ = Fm = −i(∂0B0 + ∂⃗ · B⃗) + i(−∂0B⃗ − ∂⃗B0)− ∂⃗ × B⃗

Fm − Fm = 2[i(∂0B⃗ + ∂⃗B0) + ∂⃗ × B⃗] = 2(E⃗m + iH⃗m) = 2Fm. (A.67)

We thus let:

Fm := E⃗m + iH⃗m :=
1

2
(∇îB −∇îB) =

i

2
(−∇B̂ +B†∇). (A.68)

This implies:

F̂m = −F †
m = −E⃗m + iH⃗m =

i

2
(∇̂B − B̂∇). (A.69)

∇F̂m =
i

2
(∇∇̂B −∇B̂∇) =

i

2
(□B −∇B̂∇). (A.70)

Moreover, we obtain:

∇F̂m = i∇(∇̂B) = i(∇∇̂)B = i□B = iB□, (A.71)

(∇F̂m)† = (iB□)† = −i□B = −∇F̂m. (A.72)

Therefore ik = ∇F̂m is also a covariant space-time pseudovector, called the
“magnetic current”. We also have (with unusual signs):

ik = −ik0 + i⃗k = ∇F̂m = (∂0 − ∂⃗)(−E⃗m + iH⃗m) (A.73)

= ∂⃗ · E⃗m + (−∂0E⃗m + ∂⃗ × H⃗m) + i(∂0H⃗m + ∂⃗ × E⃗m)− i∂⃗ · H⃗m.

Separating the scalar, vector, pseudovector and pseudoscalar part, we obtain
Maxwell’s magnetic equations:

0 = ∂⃗ · E⃗m, (A.74)

0 = −∂0E⃗m + ∂⃗ × H⃗m, (A.75)

k⃗ = ∂0H⃗m + ∂⃗ × E⃗m, (A.76)

k0 = ∂⃗ · H⃗m. (A.77)
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We also have:

−i∇B̂∇ = (E⃗m + iH⃗m)(∂0 − ∂⃗) (A.78)

= −∂⃗ · E⃗m + (∂0E⃗m − ∂⃗ × H⃗m) + i(∂0H⃗m + ∂⃗ × E⃗m)− i∇⃗ · H⃗m

= −i∂⃗ · H⃗m + i(∂0H⃗m + ∂⃗ × E⃗m) = −ik0 + i⃗k = ∇F̂m = □iB.

The full electromagnetism, with both electric charges and magnetic monopoles,
has thus the simple rules:

F = ∇Â+ iB; j + ik = ∇F̂ ; □(A+ iB) = j + ik. (A.79)

A.4 Tensor densities
We use the electron wave as:

ϕ =
√
2(ξ η̂) =

√
2

(
ξ1 −η∗2
ξ2 η∗1

)
, (A.80)

which gives

ϕ̂ =
√
2(η ξ̂) =

√
2

(
η1 −ξ∗2
η2 ξ∗1

)
, (A.81)

ϕ† =
√
2

(
ξ†

η̂†

)
; ϕ =

√
2

(
η†

ξ̂†

)
=

√
2

(
η∗1 η∗2
−ξ2 ξ1

)
. (A.82)

A.4.1 Calculation of Ω1 and Ω2, and the determinant
We have with Dirac matrices:

Ω1 = ψψ =
(
η† ξ†

)(ξ
η

)
= η†ξ + ξ†η = η∗1ξ1 + η∗2ξ2 + ξ∗1η1 + ξ∗2η2,

Ω2 = ψ(−iγ5)ψ =
(
η† ξ†

)(−iI 0
0 iI

)(
ξ
η

)
= −iη†ξ + iξ†η, (A.83)

Ω1 + iΩ2 = 2η†ξ; Ω1 − iΩ2 = 2ξ†η; Ω2 = i(−η∗1ξ1 − η∗2ξ2 + ξ∗1η1 + ξ∗2η2).

And with the Pauli algebra we obtain:

ϕϕ = ϕϕ = det(ϕ) = 2(ξ1η
∗
1 + ξ2η

∗
2) = 2η†ξ = Ω1 + iΩ2, (A.84)

ϕ̂ϕ† = ϕ†ϕ̂ = det(ϕ)∗ = 2(η1ξ
∗
1 + η2ξ

∗
2) = 2ξ†η = Ω1 − iΩ2. (A.85)

We also obtain, for any ϕ ∈ Cl3:

ϕϕ = ϕϕ = det(ϕ), (A.86)

ϕ[det(ϕ)−1ϕ] = 1; ϕ−1 = det(ϕ)−1ϕ. (A.87)
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The second reason of our interest in Cl3 comes from the subset Cl∗3 of the
invertible elements, which satisfy det(M) ̸= 0 and form a multiplicative Lie
group. Moreover this Lie group has the Cl3 algebra as Lie algebra. This
multiplicative Lie group is the invariance group used throughout this book.
Most of the progress brought about by Clifford algebra in quantum physics
comes from the use of this multiplication, which was not computable in the
Dirac theory.

A.4.2 Calculation of Dν
µ

This calculation also gives the Rν
µ of 1.1.2. It is enough to replace ϕ

by M , and this means
√
2

(
ξ1 −η∗2
ξ2 η∗1

)
by
(
a b
c d

)
. We first calculate the

components of the vector D0 = J. With the Dirac matrices we have

Dµ
0 = Jµ = ψγµψ =

(
η† ξ†

)( 0 σµ

σ̂µ 0

)(
ξ
η

)
= η†σµη + ξ†σ̂µξ. (A.88)

We see here that the J current is the sum of the DR and DL currents:

Dµ
0 = Jµ = Dµ

R +Dµ
L; Dµ

R = ξ†σ̂µξ; Dµ
L = η†σµη, (A.89)

This comes from:

DR := ϕ
1 + σ3

2
ϕ† = 2

(
ξ1 −η∗2
ξ2 η∗1

)(
1 0
0 0

)(
ξ∗1 ξ∗2
−η2 η1

)
= 2

(
ξ∗1ξ1 ξ∗2ξ1
ξ∗1ξ2 ξ∗2ξ2

)
= ξ∗1ξ1(1 + σ3) + ξ∗2ξ2(1− σ3) + ξ∗2ξ1(σ1 + iσ2) + ξ∗1ξ2(σ1 − iσ2)

= ξ†ξ + (ξ†σ3ξσ3 + (ξ†σ1ξ)σ1 + (ξ†σ2ξ)σ2 = (ξ†σ̂µξ)σµ. (A.90)

Similarly we have:

DL := ϕ
1− σ3

2
ϕ† = 2

(
ξ1 −η∗2
ξ2 η∗1

)(
0 0
0 1

)(
ξ∗1 ξ∗2
−η2 η1

)
= 2

(
η∗2η2 −η∗2η1
−η∗1η2 η∗1η1

)
= η∗2η2(1 + σ3) + η∗1η1(1− σ3)− η∗2η1(σ1 + iσ2)− η∗1η2(σ1 − iσ2)

= η†η + (η†σ3ησ3 + (η†σ1η)σ1 + (η†σ2η)σ2 = (η†σµη)σµ. (A.91)

And we have:

DR +DL = ϕ
(1 + σ3

2
+

1− σ3
2

)
ϕ† = ϕϕ† = D0 = J, (A.92)

DR −DL = ϕ
(1 + σ3

2
− 1− σ3

2

)
ϕ† = ϕσ3ϕ

† = D3 = K. (A.93)

This gives:

D0
0 = J0 = ξ†σ0ξ + η†σ0η = ξ1ξ

∗
1 + ξ2ξ

∗
2 + η1η

∗
1 + η2η

∗
2 , (A.94)

D1
0 = J1 = ξ†σ1ξ − η†σ1η = ξ1ξ

∗
2 + ξ2ξ

∗
1 − η1η

∗
2 − η2η

∗
1 , (A.95)

D2
0 = J2 = ξ†σ2ξ − η†σ2η = i(ξ1ξ

∗
2 − ξ2ξ

∗
1 − η1η

∗
2 + η2η

∗
1), (A.96)

D3
0 = J3 = ξ†σ3ξ − η†σ3η = ξ1ξ

∗
1 − ξ2ξ

∗
2 − η1η

∗
1 + η2η

∗
2 . (A.97)
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Now beginning with the tensors known in the formalism of Dirac matrices,
we use (more details in B.1.1):

γ0γ5 =

(
0 I
I 0

)(
I 0
0 −I

)
=

(
0 −I
I 0

)
, (A.98)

γjγ5 =

(
0 −σj
σj 0

)(
I 0
0 −I

)
=

(
0 σj
σj 0

)
, j = 1, 2, 3, (A.99)

K = Kµσµ = (ξ†σ̂µξ)σµ − (η†σµη)σµ = DR −DL = D3. (A.100)

We thus obtain:

D0
3 = ξ1ξ

∗
1 + ξ2ξ

∗
2 − η1η

∗
1 − η2η

∗
2 , (A.101)

D3
3 = ξ1ξ

∗
1 − ξ2ξ

∗
2 + η1η

∗
1 − η2η

∗
2 , (A.102)

D1
3 = ξ1ξ

∗
2 + ξ2ξ

∗
1 + η1η

∗
2 + η2η

∗
1 , (A.103)

D2
3 = i(ξ1ξ

∗
2 − ξ2ξ

∗
1 + η1η

∗
2 − η2η

∗
1). (A.104)

For the calculation of components of D1 and D2, which are unknown in
the formalism of Dirac matrices, we directly use the Pauli algebra:

D1 + iD2 = ϕ(σ1 + iσ2)ϕ
†

= 2

(
ξ1 −η∗2
ξ2 η∗1

)(
0 2
0 0

)(
ξ∗1 ξ∗2
−η2 η1

)
= 4

(
−η2ξ1 η1ξ1
−η2ξ2 η1ξ2

)
(A.105)

= 2[−η2ξ1(1 + σ3) + η1ξ2(1− σ3) + η1ξ1(σ1 + iσ2)− η2ξ2(σ1 − iσ2)]

= 2[η̂†ξ + (η̂†σ3ξ)σ3 + (η̂†σ1ξ)σ1 + (η̂†σ2ξ)σ2

D1 + iD2 = 2(η̂†σ̂µξ)σµ; η̂
† = (−η2 η1). (A.106)

Similarly we obtain:

D1 − iD2 = ϕ(σ1 − iσ2)ϕ
†

= 2

(
ξ1 −η∗2
ξ2 η∗1

)(
0 0
2 0

)(
ξ∗1 ξ∗2
−η2 η1

)
= 4

(
−ξ∗1η∗2 −ξ∗2η∗2
ξ∗1η

∗
1 ξ∗2η

∗
1

)
(A.107)

= 2[−ξ∗1η∗2(1 + σ3) + ξ∗2η
∗
1(1− σ3)− ξ∗2η

∗
2(σ1 + iσ2) + ξ∗2η

∗
1(σ1 − iσ2)]

= 2[ξ†η̂ + (ξ†σ3η̂)σ3 + (ξ†σ1η̂)σ1 + (ξ†σ2η̂)σ2

D1 − iD2 = 2(ξ†σ̂µη̂)σµ. (A.108)

Thus by adding and subtracting we get:

D0
1 = −ξ∗1η∗2 − ξ1η2 + ξ∗2η

∗
1 + ξ2η1, (A.109)

D3
1 = −ξ∗1η∗2 − ξ1η2 − ξ∗2η

∗
1 − ξ2η1, (A.110)

D1
1 = ξ∗1η

∗
1 − ξ2η2 − ξ∗2η

∗
2 + ξ1η1, (A.111)

D2
1 = i(−ξ∗1η∗1 + ξ2η2 − ξ∗2η

∗
2 + ξ1η1). (A.112)
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D0
2 = i(−ξ∗1η∗2 + ξ1η2 + ξ∗2η

∗
1 − ξ2η1), (A.113)

D3
2 = i(−ξ∗1η∗2 + ξ1η2 − ξ∗2η

∗
1 + ξ2η1), (A.114)

D1
2 = i(ξ∗1η

∗
1 + ξ2η2 − ξ∗2η

∗
2 − ξ1η1), (A.115)

D2
2 = ξ∗1η

∗
1 + ξ2η2 + ξ∗2η

∗
2 + ξ1η1. (A.116)

A.4.3 Calculation of Sk
For the calculation of S = S3, the formalism of Dirac matrices gives with

Sµν = ψiγµγνψ:
E3

3 := S12
3 = ψiγ1γ2ψ. (A.117)

And we have:

iγ1γ2 = i

(
0 −σ1
σ1 0

)(
0 −σ2
σ2 0

)
=

(
σ3 0
0 σ3

)
, (A.118)

and similarly we have:

iγ2γ3 =

(
σ1 0
0 σ1

)
; iγ3γ1 =

(
σ2 0
0 σ2

)
. (A.119)

We then get:

E3
3 := S12

3 =
(
η† ξ†

)(σ3 0
0 σ3

)(
ξ
η

)
= η†σ3ξ + ξ†σ3η (A.120)

= η∗1ξ1 − η∗2ξ2 + ξ∗1η1 − ξ∗2η2.

And similarly:

E1
3 := S23

3 = η†σ1ξ + ξ†σ1η = η∗1ξ2 + η∗2ξ1 + ξ∗1η2 + ξ∗2η1, (A.121)

E2
3 := S31

3 = η†σ2ξ + ξ†σ2η = i(−η∗1ξ2 + η∗2ξ1 − ξ∗1η2 + ξ∗2η1). (A.122)

Next we have:

γ1γ0 =

(
0 −σ1
σ1 0

)(
0 I
I 0

)
=

(
−σ1 0
0 σ1

)
, (A.123)

which gives:

H1
3 := S10

3 =
(
η† ξ†

)(−iσ1 0
0 iσ1

)(
ξ
η

)
= −iη†σ1ξ + iξ†σ1η (A.124)

= i(−η∗1ξ2 − η∗2ξ1 + ξ∗1η2 + ξ∗2η1).

Similarly we have:

H2
3 := S20

3 = −iη†σ2ξ + iξ†σ2η = −η∗1ξ2 − η∗2ξ1 + ξ∗1η2 − ξ∗2η1, (A.125)

H3
3 := S30

3 = −iη†σ3ξ + ξ†σ3η = i(−η∗1ξ1 + η∗2ξ2 + ξ∗1η1 − ξ∗2η2). (A.126)
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We derive that:

S12
3 + iS30

3 = 2η†σ3ξ = 2(ξ1η
∗
1 − ξ2η

∗
2), (A.127)

S23
3 + iS10

3 = 2η†σ1ξ = 2(ξ2η
∗
1 − ξ1η

∗
2), (A.128)

S31
3 + iS20

3 = 2η†σ2ξ = 2i(−ξ2η∗1 + ξ1η
∗
2), (A.129)

S23
3 + iS10

3 + iS31
3 − S20

3 = 4ξ2η
∗
1 , (A.130)

S23
3 + iS10

3 − iS31
3 + S20

3 = 4ξ1η
∗
2 . (A.131)

And we have:

S23
3 σ1 + S31

3 σ2 + S12
3 σ3 + S10

3 iσ1 + S20
3 iσ2 + S30

3 iσ3

=

(
S12
3 + iS30

3 S23
3 + iS10

3 − iS31
3 + S20

3

S23
3 + iS10

3 + iS31
3 − S20

3 −(S12
3 + iS30

3 )

)
= 2

(
ξ1η

∗
1 − ξ2η

∗
2 2ξ1η

∗
2

2ξ2η
∗
1 −(ξ1η

∗
1 − ξ2η

∗
2)

)
= 2

(
ξ1 −η∗2
ξ2 η∗1

)(
1 0
0 −1

)(
η∗1 η∗2
−ξ2 ξ1

)
= ϕσ3ϕ = S = S3, (A.132)

For the calculation of the components of S1 and S2, which are unknown in
the formalism of Dirac matrices, we start directly from the Pauli algebra.
We also need:

R := ϕ
1 + σ3

2
=

√
2

(
ξ1 0
ξ2 0

)
; L := ϕ

1− σ3
2

=
√
2

(
0 −η∗2
0 η∗1

)
,

SR :=
1

2
(S1 + iS2) = ϕ

1

2
(σ1 + iσ2)ϕ = R

1

2
(σ1 + iσ2)R, (A.133)

SL :=
1

2
(S1 − iS2) = ϕ

1

2
(σ1 − iσ2)ϕ = L

1

2
(σ1 − iσ2)L. (A.134)

We let:

SR := E⃗R + iH⃗R; E⃗R := Ej
Rσj ; H⃗R := Hj

Rσj , (A.135)

E1
R := S23

R ; E2
R := S31

R ; E3
R := S12

R ; Hj
R := Sj0

R , (A.136)

SL := E⃗L + iH⃗L; E⃗L := Ej
Lσj ; H⃗L := Hj

Lσj , (A.137)

E1
L := S23

L ; E2
L := S31

L ; E3
L := S12

L ; Hj
L := Sj0

L . (A.138)
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This gives:

E1
R =

1

2
(ξ21 − ξ22 + ξ̄21 − ξ̄22); H

1
R =

i

2
(−ξ21 + ξ22 + ξ̄21 − ξ̄22), (A.139)

E2
R =

i

2
(ξ21 + ξ22 − ξ̄21 − ξ̄22); H

2
R =

1

2
(ξ21 + ξ22 + ξ̄21 + ξ̄22), (A.140)

E3
R = −ξ1ξ2 − ξ̄1ξ̄2; H

3
R = i(ξ1ξ2 − ξ̄1ξ̄2), (A.141)

E1
L =

1

2
(η21 − η22 + η̄21 − η̄22); H

1
L =

i

2
(η21 − η22 − η̄21 + η̄22), (A.142)

E2
L =

i

2
(η21 + η22 − η̄21 − η̄22); H

2
L =

1

2
(−η21 − η22 − η̄21 − η̄22), (A.143)

E3
L = −η1η2 − η̄1η̄2; H

3
L = i(−η1η2 + η̄1η̄2). (A.144)

The link with S1 and S2 is:

S1 = E⃗1 + iH⃗1 = SR + SL = E⃗R + iH⃗R + E⃗L + iH⃗L,

E⃗1 = E⃗R + E⃗L; H⃗1 = H⃗R + H⃗L, (A.145)

S2 = E⃗2 + iH⃗2 = −iSR + iSL = −i(E⃗R + iH⃗R) + i(E⃗L + iH⃗L),

E⃗2 = H⃗R − H⃗L; H⃗2 = E⃗L − E⃗R. (A.146)

We then obtain:

S12
1 = −ξ1ξ2 − η1η2 − ξ∗1ξ

∗
2 − η∗1η

∗
2 , (A.147)

S30
1 = i(ξ1ξ2 − η1η2 − ξ∗1ξ

∗
2 + η∗1η

∗
2), (A.148)

S23
1 =

1

2
(ξ21 − ξ22 + η21 − η22 + ξ∗21 − ξ∗22 + η∗21 − η∗22 ), (A.149)

S10
1 =

i

2
(−ξ21 + ξ22 + η21 − η22 + ξ∗21 − ξ∗22 − η∗21 + η∗22 ), (A.150)

S20
1 =

1

2
(ξ21 + ξ22 − η21 − η22 + ξ∗21 + ξ∗22 − η∗21 − η∗22 ), (A.151)

S31
1 =

i

2
(ξ21 + ξ22 + η21 + η22 − ξ∗21 − ξ∗22 − η∗21 − η∗22 ). (A.152)

Similarly we have:

S12
2 = i(ξ1ξ2 + η1η2 − ξ∗1ξ

∗
2 − η∗1η

∗
2), (A.153)

S30
2 = ξ1ξ2 − η1η2 + ξ∗1ξ

∗
2 − η∗1η

∗
2 , (A.154)

S23
2 =

i

2
(−ξ21 + ξ22 − η21 + η22 + ξ∗21 − ξ∗22 + η∗21 − η∗22 ), (A.155)

S10
2 =

1

2
(−ξ21 + ξ22 + η21 − η22 − ξ∗21 + ξ∗22 + η∗21 − η∗22 ), (A.156)

S20
2 =

i

2
(−ξ21 − ξ22 + η21 + η22 + ξ∗21 + ξ∗22 − η∗21 − η∗22 ), (A.157)

S31
2 =

1

2
(ξ21 + ξ22 + η21 + η22 + ξ∗21 + ξ∗22 + η∗21 + η∗22 ). (A.158)
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We also obtain the number of 36 densities by remarking that there are 8
squares and 28 = 8× 7/2 pairs.

Calculation of D
ν

µ

Let ϕ be an invertible element in Cl∗3, with determinant ρeiβ . Let D
and D be the similitudes satisfying:

D : x 7→ x′ = D(x) = ϕxϕ† ; D : x 7→ x′ = D(x) = ϕxϕ̂. (A.159)

Let P such that:
ϕ =

√
ρei

β
2 P, (A.160)

and let Lo and Lo the similitudes such that:

Lo : x 7→ x′ = Lo(x) = PxP † ; Lo : x 7→ x′ = Lo(x) = PxP̂ . (A.161)

We have:

ρeiβ = det(ϕ) = ϕϕ =
√
ρei

β
2 P

√
ρei

β
2 P = ρeiβPP , (A.162)

then we get:
PP = 1 ; P = P−1 ; Lo = Lo−1. (A.163)

P is thus an element in SL(2,C) and Lo is a Lorentz transformation. We
know that, for such a transformation, if we denote by (Lo) the matrix of Lo
in an orthonormal basis and g the signature-matrix:

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (A.164)

we have the following, M t being the transposed matrix 8 of M :

(Lo)−1 = g(Lo)tg ; (Lo)g = g(Lo)t. (A.165)

And we also have:

D(x) = ϕxϕ† =
√
ρei

β
2 Px

√
ρe−i β

2 P † = ρPxP † = ρLo(x), (A.166)

then:
D = ρLo ; (D) = ρ(Lo). (A.167)

8. The transposition exchanges the rows and columns: if M =

(
a b
c d

)
then: Mt =(

a c
b d

)
. We have, for any matrices A and B, (AB)t = BtAt and det(At) = det(A).
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Similarly we have:

D(x) =MxM̂ =
√
ρei

β
2 Px

√
ρe−i β

2 P̂ = ρPxP̂ = ρLo(x), (A.168)

D = ρLo ; (D) = ρ(Lo). (A.169)

Multiplying (A.165) by ρ, we get:

(D)g = g(D)t ; (D) = g(D)tg. (A.170)

This gives, for j = 1, 2, 3 and k = 1, 2, 3 :

D
0

0 = D0
0 ; D

j

0 = −D0
j ; D

0

j = −Dj
0 ; D

k

j = Dj
k (A.171)

The result is: rows, like columns, of the matrix (Dν
µ), are orthogonal, be-

cause we have for D and D:

Dµ = ϕσµϕ
† = Dν

µσν ; Dµ = ϕσµϕ̂ = D
ν

µσν , (A.172)

Dµ ·Dν = Dµ ·Dν = δµνρ
2. (A.173)

A.4.4 Proof of ∇ = M∇′M̂

Since ϕ has the same structure as M , we will use same notation:

M =
√
2(ξ η̂) =

√
2

(
ξ1 −η∗2
ξ2 η∗1

)
, (A.174)

and this gives:

M̂ =
√
2(η ξ̂) =

√
2

(
η1 −ξ∗2
η2 ξ∗1

)
, (A.175)

M† =
√
2

(
ξ∗1 ξ∗2
−η2 η1

)
; M =

√
2

(
η∗1 η∗2
−ξ2 ξ1

)
. (A.176)

We get:

M∇′M̂ = 2

(
η∗1 η∗2
−ξ2 ξ1

)(
∂′0 − ∂′3 −∂′1 + i∂′2

−∂′1 − i∂′2 ∂′0 + ∂′3

)(
η1 −ξ∗2
η2 ξ∗1

)
=

(
A B
C D

)
(A.177)
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The Rν
µ are obtained by (A.94) to (A.104) giving the Dν

µ, we have:

A = 2[(η1η
∗
1 + η2η

∗
2)∂

′
0 + (−η1η∗2 − η2η

∗
1)∂

′
1

+ i(η2η
∗
1 − η1η

∗
2)∂

′
2 + (−η1η∗1 + η2η

∗
2)∂

′
3]

= (R0
0 −R0

3)∂
′
0 + (R1

0 −R1
3)∂

′
1 + (R2

0 −R2
3)∂

′
2 + (R3

0 −R3
3)∂

′
3

= Rµ
0∂

′
µ −Rµ

3∂
′
µ = ∂0 − ∂3. (A.178)

C = 2[(ξ1η2 − ξ2η1)∂
′
0 + (−ξ1η1 + ξ2η2)∂

′
1

− i(ξ1η1 + ξ2η2)∂
′
2 + (ξ1η2 + ξ2η1)∂

′
3]

= (−R0
1 − iR0

2)∂
′
0 + (−R1

1 − iR1
2)∂

′
1 + (−R2

1 − iR2
2)∂

′
2 + (−R3

1 − iR3
2)∂

′
3

= −Rµ
1∂

′
µ − iRµ

2∂
′
µ = −∂1 − i∂2. (A.179)

B = 2[(ξ∗1η
∗
2 − ξ∗2η

∗
1)∂

′
0 + (−ξ∗1η∗1 + ξ∗2η

∗
2)∂

′
1

+ i(ξ∗1η
∗
1 + ξ∗2η

∗
2)∂

′
2 + (ξ∗1η

∗
2 + ξ∗2η

∗
1)∂

′
3]

= (−R0
1 + iR0

2)∂
′
0 + (−R1

1 + iR1
2)∂

′
1 + (−R2

1 + iR2
2)∂

′
2 + (−R3

1 + iR3
2)∂

′
3

= −Rµ
1∂

′
µ + iRµ

2∂
′
µ = −∂1 + i∂2. (A.180)

D = 2[(ξ1ξ
∗
1 + ξ2ξ

∗
2)∂

′
0 + (ξ1ξ

∗
2 + ξ2ξ

∗
1)∂

′
1

+ i(ξ1ξ
∗
2 − ξ2ξ

∗
1)∂

′
2 + (ξ1ξ

∗
1 − ξ2ξ

∗
2)∂

′
3]

= (R0
0 +R0

3)∂
′
0 + (R1

0 +R1
3)∂

′
1 + (R2

0 +R2
3)∂

′
2 + (R3

0 +R3
3)∂

′
3

= Rµ
0∂

′
µ +Rµ

3∂
′
µ = ∂0 + ∂3. (A.181)

So we get:

M∇′M̂ =

(
A B
C D

)
=

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)
= ∇. (A.182)

A.4.5 Proof of det(Rν
µ) = r4

We let:(
y1 y2
y3 y4

)
:=

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
;

(
y′1 y′2
y′3 y′4

)
:=

(
x0

′
+ x3

′
x1

′ − ix2
′

x1
′
+ ix2

′
x0

′ − x3
′

)
,

(A.183)

Y :=


y1
y2
y3
y4

 =


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1



x0

x1

x2

x3

 = NX,

Y ′ :=


y′1
y′2
y′3
y′4

 =


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1



x0

′

x1
′

x2
′

x3
′

 = NX ′. (A.184)
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We then have:
X = N−1Y ; X ′ = N−1Y ′. (A.185)

We also let:
Y ′ = PY ; X ′ = DX. (A.186)

We get:

PNX = PY = Y ′ = NX ′ = NDX ; PN = ND ; D = N−1PN,
(A.187)

which implies:

det(Rν
µ) = det(N−1PN) = det(N−1) det(P ) det(N) = det(P ). (A.188)

We have:(
y′1 y′2
y′3 y′4

)
= x′ =MxM† = 2

(
ξ1 −η∗2
ξ2 η∗1

)(
y1 y∗2
y3 y4

)(
ξ∗1 ξ∗2
−η2 η1

)
(A.189)

= 2


ξ1ξ

∗
1y1 − η∗2ξ

∗
1y3 ξ1ξ

∗
2y1 − η∗2ξ

∗
2y3

−ξ1η2y2 + η∗2η2y4 +ξ1η1y2 − η∗2η1y4

ξ2ξ
∗
1y1 + η∗1ξ

∗
1y3 ξ2ξ

∗
2y1 + ξ∗2η

∗
1y3

−ξ2η2y2 − η∗1η2y4 +ξ2η1y2 + η∗1η1y4

 ,

which gives:

Y ′ = PY ; P = 2


ξ1ξ

∗
1 −ξ1η2 −ξ∗1η∗2 η2η

∗
2

ξ1ξ
∗
2 ξ1η1 −ξ∗2η∗2 −η1η∗2

ξ2ξ
∗
1 −ξ2η2 ξ∗1η

∗
1 −η2η∗1

ξ2ξ
∗
2 ξ2η1 ξ∗2η

∗
1 η1η

∗
1

 . (A.190)

The calculation of the determinant of P thus gives:

det(P ) = 16(ξ21ξ
∗2
1 η21η

∗2
1 + ξ21ξ

∗2
2 η22η

∗2
1 + ξ22ξ

∗2
1 η21η

∗2
2 + ξ22ξ

∗2
2 η22η

∗2
2

+ 2ξ21ξ
∗
1ξ

∗
2η1η

∗2
1 η2 + 4ξ1ξ

∗
1ξ2ξ

∗
2η1η

∗
1η2η

∗
2

+ 2ξ1ξ
∗2
1 ξ2η

2
1η

∗
1η

∗
2 + 2ξ1ξ2ξ

∗2
2 η∗1η

2
2η

∗
2 + 2ξ∗1ξ

2
2ξ

∗
2η1η2η

∗2
2 )

= 16(ξ1ξ
∗
1η1η

∗
1 + ξ1ξ

∗
2η

∗
1η2 + ξ∗1ξ2η1η

∗
2 + ξ2ξ

∗
2η2η

∗
2)

2

= 16[(ξ1η
∗
1 + ξ2η

∗
2)(ξ

∗
1η1 + ξ∗2η2)]

2. (A.191)

Thus we get:

det(Rν
µ) = [2(ξ1η

∗
1 + ξ2η

∗
2)2(ξ

∗
1η1 + ξ∗2η2)]

2

= [reiθre−iθ]2 = (r2)2 = r4. (A.192)
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A.4.6 Relations between tensors

We have:

DµD̂ν = ϕσµϕ
†ϕ̂σνϕ† = ϕσµϕ

†ϕ̂σ̂ν ϕ̂
† (A.193)

= ϕσµ(Ω1 − iΩ2)σ̂νϕ = (Ω1 − iΩ2)ϕσµσ̂νϕ. (A.194)

For j = 1, 2, 3 this gives:

D0D̂j = (Ω1 − iΩ2)ϕσ̂jϕ = −(Ω1 − iΩ2)Sj , (A.195)

DjD̂0 = (Ω1 − iΩ2)ϕσjϕ = (Ω1 − iΩ2)Sj , (A.196)

D1D̂2 = (Ω1 − iΩ2)ϕσ1σ̂2ϕ = (Ω1 − iΩ2)ϕ(−i)σ3ϕ = −(Ω2 + iΩ1)S3,
(A.197)

D2D̂1 = (Ω1 − iΩ2)ϕσ2σ̂1ϕ = (Ω1 − iΩ2)ϕiσ3ϕ = (Ω2 + iΩ1)S3. (A.198)

And similarly we get:

D2D̂3 = −D3D̂2 = −(Ω2 + iΩ1)S1, (A.199)

D3D̂1 = −D1D̂3 = −(Ω2 + iΩ1)S2. (A.200)

For j = 1, 2, 3 and for k = 1, 2, 3, we have:

DjŜk = ϕσjϕ
†ϕ̂σkϕ = ϕσjϕ

†ϕ̂σ̂kϕ
† = −(Ω1 − iΩ2)ϕσjσkϕ

†, (A.201)

SjDk = ϕσjϕϕσkϕ
† = (Ω1 + iΩ2)ϕσjσkϕ

†. (A.202)

Thus for j = 1, 2, 3 we get:

DjŜj = −(Ω1 − iΩ2)ϕϕ
† = (−Ω1 + iΩ2)D0, (A.203)

SjDj = (Ω1 + iΩ2)ϕϕ
† = (Ω1 + iΩ2)D0. (A.204)

And for k ̸= j we have:

D1Ŝ2 = −i(Ω1 − iΩ2)ϕσ3ϕ
† = −(Ω2 + iΩ1)D3 = −D2Ŝ1, (A.205)

S1D2 = i(Ω1 + iΩ2)ϕσ3ϕ
† = (−Ω2 + iΩ1)D3,= −S2D1, (A.206)

D2Ŝ3 = −i(Ω1 − iΩ2)ϕσ1ϕ
† = −(Ω2 + iΩ1)D1 = −D3Ŝ2, (A.207)

S2D3 = i(Ω1 + iΩ2)ϕσ1ϕ
† = (−Ω2 + iΩ1)D1,= −S3D2, (A.208)

D3Ŝ1 = −i(Ω1 − iΩ2)ϕσ2ϕ
† = −(Ω2 + iΩ1)D2 = −D1Ŝ3, (A.209)

S3D1 = i(Ω1 + iΩ2)ϕσ2ϕ
† = (−Ω2 + iΩ1)D2 = −S2D1. (A.210)
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For j = 1, 2, 3, we also have:

D0Ŝj = ϕϕ†ϕ̂σjϕ = ϕϕ†ϕ̂σ̂jϕ
† = (−Ω1 + iΩ2)ϕσjϕ

†

= (−Ω1 + iΩ2)Dj , (A.211)

SjD0 = ϕσjϕϕϕ
† = (Ω1 + iΩ2)ϕσjϕ

† = (Ω1 + iΩ2)Dj . (A.212)

Finally we have for j = 1, 2, 3 and for k = 1, 2, 3 :

SjSk = ϕσjϕϕσkϕ = (Ω1 + iΩ2)ϕσjσkϕ, (A.213)

SjSj = (Ω1 + iΩ2)ϕϕ = (Ω1 + iΩ2)
2. (A.214)

While for k ̸= j, we get:

S1S2 = −S2S1 = (−Ω2 + iΩ1)S3, (A.215)
S2S3 = −S3S2 = (−Ω2 + iΩ1)S1, (A.216)
S3S1 = −S1S3 = (−Ω2 + iΩ1)S2. (A.217)
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Appendix B

Other Clifford algebras

We present the space-time algebra and the Dirac matrices.
We study its link with the Pauli algebra and the link between the
invariant wave equation and the Lagrangian density. We study
the same with space-time algebra. We calculate Tétrode’s tensor.
Then we present the Clifford algebra Cl3,3 = End(Cl3) that we need
for the study of weak and strong interactions and gravitation.

B.1 Clifford algebra of space-time
The Clifford algebra of space-time Cl1,3 contains the real numbers and

the vectors of space-time x such that:

x = x0γ0 + x1γ1 + x2γ2 + x3γ3 = xµγµ. (B.1)

The four γµ form an orthonormal basis of space-time:

(γ0)
2 = 1 ; (γ1)

2 = (γ2)
2 = (γ3)

2 = −1 ; γµ · γν = 0 , µ ̸= ν. (B.2)

Proponents of Clifford algebra can generally be divided into two camps:
those who put a + sign for time (Hestenes [73][78]), and those who put
a − sign for time (Deheuvels [60]). We will see in B.2 that these two
signatures give two subalgebras of Cl3,3. Here we use a + sign for time,
which corresponds to the choice of Hestenes. It is necessary because the
metric of space-time is given by the determinant (A.86). The general term
of Cl1,3 is a sum:

N = s+ v +B + pv + ps (B.3)

where s is a real number, v is a vector in space-time, B is a 2-vector, pv is a 3-
vector (or pseudovector) and ps is a pseudoscalar. There are 1+4+6+4+1 =
16 = 24 dimensions on the real field because: There are 6 independent 2-
vectors γ01 = γ0γ1, γ02, γ03, γ12, γ23 and γ31, where γji = −γij , j ̸= i, and

237
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4 3-vectors γ012, γ023, γ031 and γ123 and one pseudoscalar:

ps = bγ0123 ; γ0123 = γ0γ1γ2γ3 = i = iγ5, (B.4)

where b is a real number.
The even part of N is s + B + ps, while the odd part is v + pv. The

main automorphism satisfies N 7→ N̂ = s− v +B − pv + ps. The reversion
satisfies:

N 7→ Ñ = s+ v −B − pv + ps. (B.5)

Among the 16 generators of Cl1,3, 10 = 5 × 4/2 have a square of −1 and
6 = 4× 3/2 have a square of 1:

12 = γ01
2 = γ02

2 = γ03
2 = γ0

2 = γ123
2 = 1, (B.6)

γ1
2 = γ2

2 = γ3
2 = γ12

2 = γ23
2 = γ31

2

= γ012
2 = γ023

2 = γ031
2 = γ0123

2 = −1.

Two remarks:
1 - If we use a + sign for space then we get 6 generators whose square

is 1 and 10 whose square is −1. The two Clifford algebras Cl1,3 and Cl3,1
are hence not equal.

2 - The even subalgebra Cl+1,3, formed by all even elements N = s+b+ps
is 8-dimensional and is isomorphic to Cl3. We will see this in detail in the
next section using the Dirac matrices. The even subalgebra of Cl3,1 is also
isomorphic to Cl3.

The privileged differential operator in Cl1,3 is:

∂∂∂ = γµ∂µ ; γ0 = γ0 ; γj = −γj , j = 1, 2, 3. (B.7)

It satisfies:
∂∂∂∂∂∂ = □ = (∂0)

2 − (∂1)
2 − (∂2)

2 − (∂3)
2. (B.8)

B.1.1 Dirac matrices, electromagnetism
Most physicists do not directly use the Clifford algebra of space-time,

but use instead the matrix algebra M4(C), an algebra on the complex field.
This algebra is 16-dimensional on the complex field, and thus 32-dimensional
on the real field. Therefore M4(C) ̸= Cl1,3. The Dirac matrices are not
uniquely defined. The easiest way to link Cl1,3 to Cl3 makes use of 1(1.4),
which we recall here:

γ0 = γ0 =

(
0 I
I 0

)
; I =

(
1 0
0 1

)
; γj = −γj =

(
0 −σj
σj 0

)
, j = 1, 2, 3.

1. This choice of Dirac matrices is not the same one used in Dirac theory to calculate
the solutions for the hydrogen atom. But it is the choice made for high velocities and
when special relativity is required. It is also the choice of electroweak theory. We will see
in Appendix C that this choice also allows us to solve the equation in the case of the H
atom by separation of variables in spherical coordinates. This also proves that the early
choice of Dirac matrices was not necessary, only sufficient, for the H atom.
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We then have:

∂∂∂ = γµ∂µ =

(
0 ∇
∇̂ 0

)
(B.9)

It is easy to show that:

γ0j =

(
−σj 0
0 σj

)
; γ23 =

(
−iσ1 0
0 −iσ1

)
i = γ0123 =

(
iI 0
0 −iI

)
. (B.10)

Isomorphism between Cl+1,3 and Cl3 : let N be any even element. With:

N = a+B + ps ; B = u1γ10 + u2γ20 + u3γ30 + v1γ32 + v2γ13 + v3γ21,

ps = bγ0123 = bi, (B.11)
M = a+ u⃗+ iv⃗ + ib ; u⃗ = u1σ1 + u2σ2 + u3σ3,

v⃗ = v1σ1 + v2σ2 + v3σ3. (B.12)

B is a bivector and ps is a pseudoscalar in space-time. With the choice of
(1.4), for the Dirac matrices we have:

N =

(
M 0

0 M̂

)
; Ñ =

(
M 0
0 M†

)
. (B.13)

Since the P :M 7→ M̂ conjugation is compatible with the addition and the
multiplication, the algebra of M is isomorphic to the algebra of N . Since
N contains both M and M̂ , the Dirac matrices use the two nonequivalent
representations of Cl∗3 (this is well known in Lie group theory [1]).

The Dirac operator is:

∂∂∂ = γµ∂µ =

(
0 ∂0 − ∂⃗

∂0 + ∂⃗ 0

)
=

(
0 ∇
∇̂ 0

)
. (B.14)

Similarly, the electromagnetic potential is the vector:

A := γµA
µ =

(
0 A0 + A⃗

A0 − A⃗ 0

)
=

(
0 A

Â 0

)
. (B.15)

The electromagnetic field is the bivector:

F := ∂∂∂ ∧A = ∂∂∂A−A∂∂∂ (B.16)

=

(
0 ∇
∇̂ 0

)(
0 A

Â 0

)
−
(
0 A

Â 0

)(
0 ∇
∇̂ 0

)
=

(
∇Â−A∇̂ 0

0 ∇̂A− Â∇

)
=

(
F 0

0 F̂

)
.

The electric current satisfies:

j = ∂∂∂F = ∂∂∂∂∂∂A = □A =

(
0 ∇F̂

∇̂F 0

)
=

(
0 j

ĵ 0

)
. (B.17)
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B.1.2 Cl1,3 as Cartesian product Cl3 × Cl3

We can shorten the calculations in Cl1,3 by considering only the first row
of the Dirac matrices. This is possible because the second row is obtained
from the first one by using the P automorphism on Cl3. The general element
of Cl1,3 may thus be expressed as a couple of elements of Cl3:

M = (A B); N = (C D); M +N = (A+ C B +D), (B.18)

MN = (AC +BD̂ AD +BĈ) (B.19)
γµ = (0 σµ); x = xµγµ = (0 x) = (0 xµσµ), (B.20)

∂∂∂ = γµ∂µ = (0 ∇) = (0 σµ∂µ); ∂∂∂(A B) = (∇B̂ ∇Â). (B.21)

With these notations, and for any u and v in space-time, we have:

uv + vu = (0 u)(0 v) + (0 v)(0 u) = (uv̂ + vû 0). (B.22)

Identifying A and (A 0), we then have:

uv + vu = uv̂ + vû = u0v0 − u1v1 − u2v2 − u3v3. (B.23)

This identification allows us to consider Cl1,3 as a Cl3-module:

X(A B) = (X 0)(A B) = (XA XB), (B.24)

for any X, A and B in Cl3. This is what allows us the use in Cl1,3 of
the complex field, which is the center of Cl3, nevertheless the fact that the
center of Cl1,3 is only the real field.

B.1.3 Proof of Rµ
νγ

ν = ÑγµN

Using the aforementioned notation we have:

N =
(
M 0

)
; Ñ =

(
M 0

)
; γµ =

(
0 σµ

)
, (B.25)

the equality Rµ
νγ

ν = ÑγµN is equivalent to:(
0 Rµ

νσ
ν
)
=
(
0 MσµM̂

)
. (B.26)

And the equality proved in A.4.4 : ∇ =M∇′M̂ , can also be expressed as:

∂νσ
ν =M∂′µσ

µM̂, (B.27)

which means
Rµ

ν∂
′
µσ

ν =MσµM̂∂′µ. (B.28)

And we thus have:

Rµ
νσ

ν =MσµM̂ ; Rµ
νγ

ν = ÑγµN. (B.29)
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B.1.4 Invariant equation and Lagrangian density

We will now prove that the Lagrangian density of the Dirac theory is
the real part, in the sense of Clifford algebra, of the wave equation in its
invariant form (1.113). Then noting ⟨M⟩n the n-vector part of M , we must
prove that:

L = ⟨ϕ(∇ϕ̂)σ21 + ϕqAϕ̂+mϕϕ⟩0. (B.30)

But we have:

ϕAϕ̂ = Aµϕσµϕ̂ = A0D0 −
j=3∑
j=1

AjDj = A0(D
µ

0σµ)−
j=3∑
j=1

Aj(D
µ

j σµ)

= A0(D
0

0 +

j=3∑
j=1

D
j

0σj)−
j=3∑
j=1

Aj(D
0

j +

k=3∑
k=1

D
k

jσk). (B.31)

We established with the calculation of the similitude D (A.171) that gives:

ϕAϕ̂ = A0(D
0
0 −

j=3∑
j=1

D0
jσj)−

j=3∑
j=1

Aj(−Dj
0 +

k=3∑
k=1

Dj
kσk) = AνD

ν
µσ

µ.

(B.32)

The scalar part is then

⟨ϕAϕ̂⟩0 = Dν
0Aν = AνJ

ν = Aµψγ
µψ. (B.33)

We next have ϕϕ = Ω1 + iΩ2, then:

⟨mϕϕ⟩0 = mΩ1 = mψψ. (B.34)

We next get:

1

2
[(ψγµ(−i)∂µψ) + (ψγµ(−i)∂µψ)†] =

i

2
(−ψγµ∂µψ + ∂µψγ

µψ) (B.35)

= − i

2
[ξ†(∇̂ξ)− (ξ†∇̂)ξ + η†(∇η)− (η†∇)η].

With Cl3 we have:

1

2
[ϕ(∇ϕ̂)− (ϕ∇)ϕ̂]σ21 = − i

2
[ϕ(∇ϕ̂σ3)− (ϕ∇)ϕ̂σ3] (B.36)

= −i

(
η†(∇η)− (η†∇)η −η†(∇ξ̂) + (η†∇)ξ̂

ξ̂†(∇η)− (ξ̂†∇)η −ξ̂†(∇ξ̂) + (ξ̂†∇)ξ̂

)
,

⟨1
2
[ϕ(∇ϕ̂)− (ϕ∇)ϕ̂]σ21⟩0 = − i

2
[η†(∇η)− (η†∇)η − ξ̂†(∇ξ̂) + (ξ̂†∇)ξ̂].
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And we have:

−ξ̂†(∇ξ̂) + (ξ̂†∇)ξ̂ = (ξ̂†∇)ξ̂ − ξ̂†(∇ξ̂)

= ξ†(∇̂ξ)− (ξ†∇̂)ξ. (B.37)

We thus have:

L =
1

2
[(ψγµ(−i)∂µψ) + (ψγµ(−i)∂µψ)†] + qAµψγ

µψ +mψψ

= ⟨ϕ(∇ϕ̂)σ21 + ϕqAϕ̂+mϕϕ⟩0. (B.38)

B.1.5 Calculation of Tétrode’s tensor
The calculation with the Dirac matrices gives:

ψγ0∂νψ − (∂νψ)γ
0ψ =

(
ξ† η†

)(∂νξ
∂νη

)
−
(
∂νξ

† ∂νη
†)(ξ

η

)
= ξ†(∂νξ)− (∂νξ

†)ξ + η†(∂νη)− (∂νη
†)η. (B.39)

We thus have:

i
ℏ
2
c[ψγ0∂νψ − (∂νψ)γ

0ψ] = i
ℏ
2
c[ξ†(∂νξ)− (∂νξ

†)ξ + η†(∂νη)− (∂νη
†)η].

(B.40)
For the γj matrices, with j = 1, 2, 3 we have:

ψγj∂νψ − (∂νψ)γ
jψ

=
(
η† ξ†

)( 0 −σj
σj 0

)(
∂νξ
∂νη

)
−
(
∂νη

† ∂νξ
†)( 0 −σj

σj 0

)(
ξ
η

)
= ξ†σj(∂νξ)− (∂νξ

†)σjξ − η†σj(∂νη) + (∂νη
†)σjη. (B.41)

This gives for j = 1:

ψγ1∂νψ − (∂νψ)γ
1ψ = ξ†σ1(∂νξ)− (∂νξ

†)σ1ξ − η†σ1(∂νη) + (∂νη
†)σ1η

= ξ2∂νξ1 + ξ1∂νξ2 − η2∂νη1 − η1∂νη2 − (∂νξ2)ξ1 − (∂νξ1)ξ2

+ (∂νη2)η1 + (∂νη1)η2. (B.42)

Similarly we have for j = 2:

ψγ2∂νψ − (∂νψ)γ
2ψ = ξ†σ2(∂νξ)− (∂νξ

†)σ2ξ − η†σ2(∂νη) + (∂νη
†)σ2η

= i[ξ2∂νξ1 − ξ1∂νξ2 − η2∂νη1 + η1∂νη2 − (∂νξ2)ξ1 + (∂νξ1)ξ2

+ (∂νη2)η1 − (∂νη1)η2]. (B.43)

And for j = 3 we get:

ψγ3∂νψ − (∂νψ)γ
3ψ = ξ†σ3(∂νξ)− (∂νξ

†)σ3ξ − η†σ3(∂νη) + (∂νη
†)σ3η

= ξ1∂νξ1 − ξ2∂νξ2 − η1∂νη1 + η2∂νη2 − (∂νξ1)ξ1 + (∂νξ2)ξ2

+ (∂νη1)η1 − (∂νη2)η2. (B.44)
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We make now the same calculation with space-time algebra. We have:

∂νΨγ021Ψ̃ =

(
∂νϕ 0

0 ∂ν ϕ̂

)(
0 iσ3
iσ3 0

)(
ϕ 0

0 ϕ̃

)
(B.45)

=

(
0 i∂νϕσ3ϕ̃

i∂ν ϕ̂σ3ϕ 0

)
=

(
0 v + iw

v̂ − iŵ 0

)
. (B.46)

The vectorial part is then:

v = ⟨∂νΨγ021Ψ̃⟩1 =

(
0 v
v̂ 0

)
= vµγµ. (B.47)

This gives:

v + iw = i∂νϕσ3ϕ̃; v − iw = (v + iw)† = −iϕσ3∂ν ϕ̃,

v = vµσµ =
i

2
(∂νϕσ3ϕ̃− ϕσ3∂ν ϕ̃) =

(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
(B.48)

= i


(∂νξ1)ξ1 − (∂νη2)η2 (∂νξ1)ξ2 + (∂νη2)η1
−ξ1(∂νξ1) + η2(∂νη2) −ξ1(∂νξ2)− η2(∂νη1)

(∂νξ2)ξ1 + (∂νη1)η2 (∂νξ2)ξ2 − (∂νη1)η1
−ξ2(∂νξ1)− η1(∂νη2) −ξ2(∂νξ2) + η1(∂νη1)

 .

We then get:

v0 + v3 = i[(∂νξ1)ξ1 − (∂νη2)η2 − ξ1(∂νξ1) + η2(∂νη2)],

v0 − v3 = i[(∂νξ2)ξ2 − (∂νη1)η1 − ξ2(∂νξ2) + η1(∂νη1)], (B.49)

v1 + iv2 = i[(∂νξ2)ξ1 + (∂νη1)η2 − ξ2(∂νξ1)− η1(∂νη2)],

v1 − iv2 = i[(∂νξ1)ξ2 + (∂νη2)η1 − ξ1(∂νξ2)− η2(∂νη1)].

By adding and subtracting, this gives:

v0 =
i

2
[ξ†∂νξ − (∂νξ

†)ξ + η†∂νη − (∂νη
†)η] = γ0 · ⟨∂νΨγ021Ψ̃⟩1,

v3 =
i

2
[ξ†σ3∂νξ − (∂νξ

†)σ3ξ − η†σ3∂νη2(∂νη
†)σ3η] = γ3 · ⟨∂νΨγ021Ψ̃⟩1,

v1 =
i

2
[ξ†σ1∂νξ − (∂νξ

†)σ1ξ − η†σ1∂νη2(∂νη
†)σ1η] = γ1 · ⟨∂νΨγ021Ψ̃⟩1,

(B.50)

v2 =
i

2
[ξ†σ2∂νξ − (∂νξ

†)σ2ξ − η†σ2∂νη2(∂νη
†)σ2η] = γ2 · ⟨∂νΨγ021Ψ̃⟩1.

B.2 General and reverse terms in Cl1,5 and Cl3,3

We previously used the Clifford algebra Cl1,5 as a natural generalization
of Cl1,3, the space-time algebra of Hestenes’ works [73]–[78]. We may link
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the Cl1,3 algebra to this greater algebra by using, with µ = 0, 1, 2, 3:

Lµ =

(
0 γµ
γµ 0

)
; L4 =

(
0 −I4
I4 0

)
; L5 =

(
0 i
i 0

)
, (B.51)

where I4 is the unit 4× 4 matrix and where:

i = γ0123 = γ0γ1γ2γ3 = iγ5; I =

(
1 0
0 1

)
. (B.52)

We use (1.4) and we recall:

γ0 = γ0 =

(
0 I
I 0

)
; γj = −γj =

(
0 −σj
σj 0

)
; γ5 =

(
I 0
0 −I

)
,

where the σj are the Pauli matrices. The Cl3,3 algebra is isomorphic to the
M8(R) algebra, and thus to the algebra of the endomorphisms in Cl3. This
End(Cl3) algebra is linked to Cl1,3 and Cl1,5 by:

Γµ = Lµ =

(
0 γµ
γµ 0

)
, µ = 0, 1, 2, 3, (B.53)

Γ4 = iL4 =

(
0 −iI4
iI4 0

)
; Γ5 = −iL5 =

(
0 γ5
γ5 0

)
, (B.54)

The indices µ, ν, ρ . . . are 0, 1, 2, 3 and the indices a, b, c, d, e are 0, 1, 2, 3, 4, 5.
We have:

Γµν = Lµν = LµLν =

(
γµν 0
0 γµν

)
, (B.55)

Γµνρ = Lµνρ = LµνLρ =

(
0 γµνρ

γµνρ 0

)
, (B.56)

Γ0123 = L0123 = L01L23 =

(
γ0123 0
0 γ0123

)
=

(
i 0
0 i

)
, (B.57)

Γ45 = L45 = L4L5 =

(
−i 0
0 i

)
, (B.58)

Γ012345 = L012345 = L0123L45 =

(
I4 0
0 −I4

)
. (B.59)

We also get:

L01235 = L0123L5 =

(
i 0
0 i

)(
0 i
i 0

)
=

(
0 −I4

−I4 0

)
, (B.60)

Lµ4 =

(
γµ 0
0 −γµ

)
; Lµ5 =

(
γµi 0
0 γµi

)
, (B.61)

Lµν4 =

(
0 −γµν
γµν 0

)
; Lµν5 =

(
0 γµν i

γµν i 0

)
, (B.62)

Lµνρ4 =

(
γµνρ 0
0 −γµνρ

)
; Lµνρ5 =

(
γµνρi 0
0 γµνρi

)
. (B.63)



B.2. GENERAL AND REVERSE TERMS IN CL1,5 AND CL3,3 245

Similarly we get:

Lµ45 =

(
0 γµi

−γµi 0

)
; Lµν45 =

(
−γµν i 0

0 γµν i

)
, (B.64)

Lµνρ45 =

(
0 γµνρi

−γµνρi 0

)
; L01234 =

(
0 −i
i 0

)
. (B.65)

The general term in Cl1,5 can be expressed as:

Ψ1,5 = Ψ1,5
0 +Ψ1,5

1 +Ψ1,5
2 +Ψ1,5

3 +Ψ1,5
4 +Ψ1,5

5 +Ψ1,5
6 , (B.66)

Ψ1,5
1 =

a=5∑
a=0

NaLa, Ψ
1,5
2 =

∑
0⩽a<b⩽5

NabLab, Ψ
1,5
3 =

∑
0⩽a<b<c⩽5

NabcLabc,

Ψ1,5
4 =

∑
0⩽a<b<c<d⩽5

NabcdLabcd, Ψ
1,5
5 =

∑
0⩽a<b<c<d<e⩽5

NabcdeLabcde,

Ψ1,5
0 = sI8, s ∈ R ; Ψ1,5

6 = pL012345, p ∈ R. (B.67)

where N ind are real numbers. The general term in Cl3,3 is expressed as:

Ψ3,3 = Ψ3,3
0 +Ψ3,3

1 +Ψ3,3
2 +Ψ3,3

3 +Ψ3,3
4 +Ψ3,3

5 +Ψ3,3
6 , (B.68)

Ψ3,3
1 =

a=5∑
a=0

NaΓa, Ψ
3,3
2 =

∑
0⩽a<b⩽5

NabΓab, Ψ
3,3
3 =

∑
0⩽a<b<c⩽5

NabcΓabc,

Ψ3,3
4 =

∑
0⩽a<b<c<d⩽5

NabcdΓabcd, Ψ
3,3
5 =

∑
0⩽a<b<c<d<e⩽5

NabcdeΓabcde,

Ψ3,3
0 = sI8, s ∈ R ; Ψ3,3

6 = pΓ012345 = pL012345, p ∈ R. (B.69)

With Cl3,3 we have:

Γind 4 = iLind 4; Γind 5 = −iLind 5; Γind 45 = Lind 45. (B.70)

The scalar and pseudoscalar terms have the following form in both algebras:

αI8 + ωL012345 =

(
(α+ ω)I4 0

0 (α− ω)I4

)
, (B.71)

αI8 − ωL012345 =

(
(α− ω)I4 0

0 (α+ ω)I4

)
. (B.72)

For the calculation of the 1-vector term:

NaLa = N4L4 +N5L5 +NµLµ,

we let:
β = N4 ; δ = N5 ; a = Nµγµ. (B.73)
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This gives:

Ψ1,5
1 =

(
0 −βI4 + δi+ a

βI4 + δi+ a 0

)
, (B.74)

Ψ3,3
1 =

(
0 −iβI4 − iδi+ a

iβI4 − iδi+ a 0

)
. (B.75)

For the calculation of the 2-vector term:

NabLab = N45L45 +Nµ4Lµ4 +Nµ5Lµ5 +NµνLµν ,

we let:

ϵ = N45 ; b = Nµ4γµ ; c = Nµ5γµ ; A = Nµνγµν . (B.76)

This gives:

Ψ1,5
2 =

(
−ϵi+ b− ic+A 0

0 ϵi− b− ic+A

)
, (B.77)

Ψ3,3
2 =

(
−ϵi+ ib+ iic+A 0

0 ϵi− ib+ iic+A

)
. (B.78)

For the calculation of the 3-vector term:

NabcLabc = Nµ45Lµ45 +Nµν4Lµν4 +Nµν5Lµν5 +NµνρLµνρ,

we let:

d = Nµ45γµ ; B = Nµν4γµν ; C = Nµν5γµν ; ie = Nµνργµνρ. (B.79)

This gives:

Ψ1,5
3 =

(
0 di−B+ iC+ ie

id+B+ iC+ ie 0

)
, (B.80)

Ψ3,3
3 =

(
0 di− iB− iiC+ ie

id+ iB− iiC+ ie 0

)
. (B.81)

For the calculation of the 4-vector term:

NabcdLabcd = Nµν45Lµν45 +Nµνρ4Lµνρ4 +Nµνρ5Lµνρ5 +N0123L0123,

we let:

D = Nµν45γµν ; if = Nµνρ4γµνρ ; ig = Nµνρ5γµνρ ; ζ = N0123.
(B.82)

This gives:

Ψ1,5
4 =

(
−iD+ if + g + ζi 0

0 iD− if + g + ζi

)
, (B.83)

Ψ3,3
4 =

(
−iD+ iif − ig + ζi 0

0 iD− iif − ig + ζi

)
. (B.84)
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For the calculation of the 5-vector term:

NabcdeLabcde = Nµνρ45Lµνρ45 +N01234L01234 +N01235L01235,

we let:

ih = Nµνρ45γµνρ ; η = N01234 ; θ = N01235. (B.85)

This gives:

Ψ1,5
5 =

(
0 h− ηi− θI4

−h+ ηi− θI4

)
, (B.86)

Ψ3,3
5 =

(
0 h− iηi+ iθI4

−h+ iηi+ iθI4

)
. (B.87)

We then get:

Ψ1,5 =

(
Ψ1 Ψ2

Ψ3 Ψ4

)
(B.88)

Ψ1 = (α+ ω) + (b+ g) + (A− iD) + i(−c+ f) + (ζ − ϵ)i,

Ψ2 = −(β + θ) + (a+ h) + (−B+ iC) + i(−d+ e) + (δ − η)i,

Ψ3 = (β − θ) + (a− h) + (B+ iC) + i(d+ e) + (δ + η)i, (B.89)
Ψ4 = (α− ω) + (−b+ g) + (A+ iD) + i(−c− f) + (ζ + ϵ)i.

Thus we have:

1

2
(Ψ1 +Ψ4) = P1 + I1; P1 = α+A+ ζi; I1 = g − ic, (B.90)

1

2
(Ψ1 −Ψ4) = P4 + I4; P4 = ω − iD− ϵi; I4 = b+ if , (B.91)

1

2
(Ψ2 +Ψ3) = P2 + I2; P2 = −θ + iC+ δi; I2 = a+ ie, (B.92)

1

2
(−Ψ2 +Ψ3) = P3 − I3; P3 = β +B+ ηi; I3 = h− id. (B.93)

The general term in Cl3,3 is:

Ψ3,3 =

(
Ψl + iΨb Ψr +Ψg

Ψr −Ψg Ψl − iΨb

)
, (B.94)

Ψl + iΨb = α+A+ ζi− i(g − ic) + ω − iD− ϵi+ i(b+ if),

Ψl − iΨb = α+A+ ζi− i(g − ic)− [ω − iD− ϵi+ i(b+ if)], (B.95)
Ψr +Ψg = −i(−θ + iC+ δi) + a+ ie− i(β +B+ ηi) + h− id,

Ψr −Ψg = −i(−θ + iC+ δi) + a+ ie+ i(β +B+ ηi)− (h− id).
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This gives:

Ψl = P1 − iI1; P1 =

(
ϕe 0

0 ϕ̂e

)
= α+A+ ζi, (B.96)

I1 =

(
0 ϕn
ϕ̂n 0

)
= g − ic, (B.97)

Ψr = −iP2 + I2; P2 =

(
ϕdr 0

0 ϕ̂dr

)
= −θ + iC+ δi, (B.98)

I2 =

(
0 ϕur
ϕ̂ur 0

)
= a+ ie, (B.99)

Ψg = −iP3 + I3; P3 =

(
ϕdg 0

0 ϕ̂dg

)
= β +B+ ηi, (B.100)

I3 =

(
0 ϕug
ϕ̂ug 0

)
= h− id, (B.101)

Ψb = −iP4 + I4; P4 =

(
ϕdb 0

0 ϕ̂db

)
= ω − iD− ϵi, (B.102)

I4 =

(
0 ϕub
ϕ̂ub 0

)
= b+ if . (B.103)

Here Ψl is alone while Ψr, Ψg and Ψb have exactly the same structure: this
is the origin of the difference between lepton and quark waves.

In Cl1,3 the reverse of A = A0 + A1 + A2 + A3 + A4 is Ã = A0 + A1 −
A2 −A3 +A4, we must change the sign of the bivectors A, B, iC, iD, and
the 3-vectors ic, id, ie, if and we then get:

Ψ̃l = P̃1 − iĨ1; P̃1 =

(
ϕe 0
0 ϕ†e

)
= α−A+ ζi, (B.104)

Ĩ1 =

(
0 ϕ†n
ϕn 0

)
= g + ic, (B.105)

Ψ̃r = −iP̃2 + Ĩ2; P̃2 =

(
ϕdr 0

0 ϕ†dr

)
= −θ − iC+ δi, (B.106)

Ĩ2 =

(
0 ϕur
ϕur 0

)
= a− ie, (B.107)

Ψ̃g = −iP̃3 + Ĩ3; P̃3 =

(
ϕdg 0

0 ϕ†dg

)
= β −B+ ηi, (B.108)

Ĩ3 =

(
0 ϕug
ϕug 0

)
= h+ id, (B.109)
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Ψ̃b = −iP̃4 + Ĩ4; P̃4 =

(
ϕdb 0

0 ϕ†db

)
= ω + iD− ϵi, (B.110)

Ĩ4 =

(
0 ϕub
ϕub 0

)
= b− if . (B.111)

Now the reverse in Cl3,3 of

A = A0 +A1 +A2 +A3 +A4 +A5 +A6,

is
Ã = A0 +A1 −A2 −A3 +A4 +A5 −A6.

The only terms that change signs are the ϵ and ω scalars, the b, c, d, e
vectors and the A, B, C bivectors. These changes of sign are not the same
in Cl3,3 and in Cl1,3. The differences are compensated for by the swapping
made in Cl3,3 between the positions of the Ψl and Ψb terms. Hence the Pn

are transformed into P̃n and the In are transformed into Ĩn for n = 1, 2, 3.
On the other hand P4 is changed into −P̃4, and I4 is changed into −Ĩ4. We
thus get:

Ψ̃3,3 =

(
Ψ̃l − iΨ̃b Ψ̃r + Ψ̃g

Ψ̃r − Ψ̃g Ψ̃l + iΨ̃b

)
. (B.112)

With:

Ψl =

(
ϕe −iϕn

−iϕ̂n ϕ̂e

)
; Ψ̃l =

(
ϕe −iϕ†n

−iϕn ϕ†e

)
, (B.113)

Ψc =

(
−iϕdc ϕuc
ϕ̂uc −iϕ̂dc

)
; Ψ̃c =

(
−iϕdc ϕ†uc
ϕuc −iϕ†dc

)
, c = r, g, b. (B.114)

Since P1 = α+A+ ζi is the general element of either Cl+1,3 or Cl+3,1, since
I1 = g − ic is the general odd element of Cl1,3 while −iI1 is the general
odd element of Cl3,1, thus Ψl = P1 − iI1 is the general element of Cl3,1.
Moreover iΨr = P2+ iI2, iΨg = P3+ iI3 and iΨb = P4+ iI4 imply that the
three iΨc are general elements of Cl3,1. It is noticeable that the three Ψc do
not have the properties of Ψl, which is similar to the three iΨc, c = r, g, b.
The well-known equalities Cl3,1 = M4(R) and Cl3,3 = M8(R) lead us to
calculate the general element of Cl3,3 from four blocks in Cl3,1 but here we
get:

M =

(
A iB
iC D

)
, A,B,C,D ∈ Cl3,1. (B.115)

This does not change the calculations with blocks, since i commutes with
the four blocks.
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Appendix C

The Hydrogen Atom

We present the resolution of our improved equation for the
hydrogen atom. Our resolution uses a method separating the
variables in spherical coordinates. Angular functions use Gegen-
bauer’s polynomial functions previously used in linear Dirac the-
ory. Here we study new solutions, for an electron with both elec-
tric charge and left and right masses.

The hydrogen atom is the jewel of Dirac theory. The first solutions cal-
culated by C. G. Darwin [11], which we may also find in newer reports [99],
are proper values of an ad hoc operator, obtained from the nonrelativistic
theory, which is not the total angular momentum operator. These solutions
give the expected number of states, the true formula for the energy levels,
and have the expected nonrelativistic approximations. This was considered
very satisfactory. But most of Darwin’s solutions suffer the disadvantage
that they have a Yvon–Takabayasi angle that is not everywhere defined and
small. Therefore they cannot be linear approximations of the solutions to
our improved equation.

We previously obtained [14] new solutions in the linear case which have a
Yvon–Takabayasi angle everywhere defined and small, and so those may be
the linear approximations of the solutions for our nonlinear wave equation.
Here we do not use these approximations: we study the actual solutions of
our improved nonlinear equation.

C.1 Separating variables

To solve the Dirac equation or the improved equation in the case of
the hydrogen atom, two methods exist. Here we shall use, not the initial
method based on the nonrelativistic wave equations, but the new method
invented more recently by H. Krüger [81], a very fine classic method from
the mathematical point of view for a partial differential equation, separating

251
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the variables in spherical coordinates:

x1 =: r sin θ cosφ ; x2 =: r sin θ sinφ ; x3 =: r cos θ. (C.1)

We use the following notations 1:

i1 = σ23 := iσ1 ; i2 = σ31 := iσ2 ; i3 = σ12 := iσ3, (C.2)

S := e−
φ
2 i3e−

θ
2 i2 ; Ω = Ω̂ := r−1(sin θ)−

1
2S, (C.3)

∂⃗′ := σ3∂r +
1

r
σ1∂θ +

1

r sin θ
σ2∂φ.

H. Krüger obtained the remarkable identity:

∂⃗ = Ω∂⃗′Ω−1, (C.4)

which with:

∇′ := ∂0 − ∂⃗′ = ∂0 −
(
σ3∂r +

1

r
σ1∂θ +

1

r sin θ
σ2∂φ

)
, (C.5)

also yields:
Ω−1∇ = ∇′Ω−1. (C.6)

Here we solve the improved wave equation in its form taken with a left wave
and a right wave. The equations that we have to resolve are thus:

0 = ∇ϕ̂σ21 + qAϕ̂+ vϕ̂m; ϕ̂ =
√
2(η1 ξ̂1),

0 = (−i∇+ qA+ lv)η1; 0 = (−i∇+ qA)η1 + le−iβξ1,

0 = (i∇+ qA+ rv)ξ̂1; 0 = (i∇+ qA)ξ̂1 + re−iβ η̂1. (C.7)

For the Dirac equation or the improved equation, with the goal of separating
the temporal variable x0 := ct and the angular variable φ from the radial
variable r and the other angular variable θ, we let:

ϕ =: ΩXe(λφ−Ex0+δ)i3 ; X =: (ξ η̂), (C.8)

where X is a function, with value in the Pauli algebra, of only r and θ, ℏcE
is the energy of the electron, and δ is an arbitrary phase that plays no role
here because the wave equations are electric gauge-invariant. λ is a real
constant which will be interpreted as the magnetic quantum number. We
then have:

Ω−1ϕ = Xe(λφ−Ex0+δ)i3 ,

Ω−1ϕ̂ = X̂e(λφ−Ex0+δ)i3 (C.9)

= (ei(λφ−Ex0+δ)η e−i(λφ−Ex0+δ)ξ̂). (C.10)

1. S has nothing to do with the tensor S3, and Ω must not be confused with the
relativistic invariants Ω1 and Ω2 studied in Chapter 1.
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We also have:

ρeiβ = det(ϕ) = det(Ω) det(X) det[e(λφ−Ex0+δ)i3 ],

det(Ω) = r−2(sin θ)−1 ; det[e(λφ−Ex0+δ)i3 ] = 1,

ρeiβ =
det(X)

r2 sin θ
. (C.11)

Thus if we let:
ρXe

iβX =: det(X), (C.12)

we get:
ρ =

ρX
r2 sin θ

; β = βX . (C.13)

Hence with the form (C.8) of the wave, the Yvon-Takabayasi angle depends
neither on time nor on the φ angle. It depends only on r and θ. It is why
the separation of variables can begin similarly for either the Dirac equation
or the improved equation. We have:

∇′Ω−1ϕ̂ = (∂0 − σ3∂r −
1

r
σ1∂θ −

1

r sin θ
σ2∂φ)[X̂e

(λφ−Ex0+δ)i3 ], (C.14)

∂0[X̂e
(λφ−Ex0+δ)i3 ] = −EX̂i3e(λφ−Ex0+δ)i3 , (C.15)

∂r[X̂e
(λφ−Ex0+δ)i3 ] = (∂rX̂)e(λφ−Ex0+δ)i3 (C.16)

∂θ[X̂e
(λφ−Ex0+δ)i3 ] = (∂θX̂)e(λφ−Ex0+δ)i3 , (C.17)

∂φ[X̂e
(λφ−Ex0+δ)i3 ] = λX̂i3e

(λφ−Ex0+δ)i3 . (C.18)

We thus get:

∇ϕ̂ = Ω
(
−EX̂i3−σ3∂rX̂− 1

r
σ1∂θX̂− λ

r sin θ
σ2X̂i3

)
e(λφ−Ex0+δ)i3 . (C.19)

This equality splits into one part for a right wave and another for a left
wave:

∇η1 = ei(λφ−Ex0+δ)
[
Ω
(
− iEη − σ3∂rη −

1

r
σ1∂θη −

iλ

r sin θ
σ2η
)]
,

∇ξ̂1 = e−i(λφ−Ex0+δ)
[
Ω
(
iEξ̂ − σ3∂r ξ̂ −

1

r
σ1∂θ ξ̂ +

iλ

r sin θ
σ2ξ̂
)]
. (C.20)

For the hydrogen atom we have: 2

qA = qA0 = −α
r

; α :=
e2

ℏc
≈ 1

137
, (C.21)

2. For the Schrödinger equation the same potential is used. But the motion is supposed
to be around the center of gravity of the hydrogen atom. A simple correction is made,
using quantum mechanics for the motion around the center of gravity. This gives a tiny
correction between energy levels in the hydrogen case and in the case of deuterium. No
such correction is made with the relativistic equation, where the center of gravity does
not have the same properties. We thus suppose, as anyone, that the potential has an
exact spherical symmetry.
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where α is the fine structure constant. We have:

qAϕ̂σ12 = −α
r
ϕ̂i3 = −α

r
ΩX̂e(λφ−Ex0+δ)i3i3

= Ω
(
− α

r
X̂i3

)
e(λφ−Ex0+δ)i3 . (C.22)

Also the (C.7) system becomes:

−EX̂i3−σ3∂rX̂− 1

r
σ1∂θX̂− λ

r sin θ
σ2X̂i3−

α

r
X̂i3+e

−iβXmi3 = 0, (C.23)

and this means:(
E +

α

r

)
X̂i3 + σ3∂rX̂ +

1

r
σ1∂θX̂ +

λ

r sin θ
σ2X̂i3 = e−iβXmi3, (C.24)

while the Dirac equation gives:(
E +

α

r

)
X̂i3 + σ3∂rX̂ +

1

r
σ1∂θX̂ +

λ

r sin θ
σ2X̂i3 = mXi3. (C.25)

Now we let:
X =

(
a −b∗

c d∗

)
=
(
ξ η̂

)
, (C.26)

where a, b, c, d are functions with complex values of the real variables r
and θ. We get:

X̂ =

(
d −c∗

b a∗.

)
=
(
η ξ̂

)
(C.27)

We thus get:

e−iβ(lξ rη̂)i3 = ie−iβXmσ3 = ie−iβ

(
la rb∗

lc −rd∗

)
, (C.28)

X̂i3 =

(
d −c∗

b a∗

)(
i 0
0 −i

)
=

(
id ic∗

ib −ia∗
)
, (C.29)

σ3∂rX̂ =

(
1 0
0 −1

)(
∂rd −∂rc∗
∂rb ∂ra

∗

)
=

(
∂rd −∂rc∗
−∂rb −∂ra∗

)
, (C.30)

σ1∂θX̂ =

(
0 1
1 0

)(
∂θd −∂θc∗
∂θb ∂θa

∗

)
=

(
∂θb ∂θa

∗

∂θd −∂θc∗
)
, (C.31)

σ2X̂i3 = i2X̂σ3 =

(
0 1
−1 0

)(
d −c∗

b a∗

)(
1 0
0 −1

)
=

(
b −a∗

−d −c∗

)
.

(C.32)
Therefore the improved equation gives:(

E +
α

r

)(id ic∗

ib −ia∗
)
+

(
∂rd −∂rc∗
−∂rb −∂ra∗

)
+

1

r

(
∂θb ∂θa

∗

∂θd −∂θc∗
)

+
λ

r sin θ

(
b −a∗

−d −c∗

)
= ie−iβ

(
la rb∗

lc −rd∗

)
. (C.33)
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Conjugating the equations containing the ∗ we get the system:

i
(
E +

α

r

)
d+ ∂rd+

1

r

(
∂θ +

λ

sin θ

)
b = ile−iβa,

−i
(
E +

α

r

)
c− ∂rc+

1

r

(
∂θ −

λ

sin θ

)
a = −ireiβb, (C.34)

i
(
E +

α

r

)
b− ∂rb+

1

r

(
∂θ −

λ

sin θ

)
d = ile−iβc,

−i
(
E +

α

r

)
a+ ∂ra+

1

r

(
∂θ +

λ

sin θ

)
c = −ireiβd.

Moreover we have:

ρeiβ = det(ϕ) =
det(X)

r2 sin θ
=

ad∗ + cb∗

r2 sin θ
(C.35)

We thus obtain:
eiβ =

ad∗ + cb∗

|ad∗ + cb∗|
. (C.36)

In the equations (C.34), only two angular operators are present, and so we
let:

a := AU ; b := BV ; c := CV ; d := DU, (C.37)

where A, B, C et D are functions of r while U and V are functions of θ.
The (C.34) system becomes:

i
(
E +

α

r

)
DU +D′U +

1

r

(
V ′ +

λ

sin θ
V
)
B = ile−iβAU,

−i
(
E +

α

r

)
CV − C ′V +

1

r

(
U ′ − λ

sin θ
U
)
A = −ireiβBV, (C.38)

i
(
E +

α

r

)
BV −B′V +

1

r

(
U ′ − λ

sin θ
U
)
D = ile−iβCV,

−i
(
E +

α

r

)
AU +A′U +

1

r

(
V ′ +

λ

sin θ
V
)
C = −ireiβDU.

Then if a κ constant exists such as:

U ′ − λ

sin θ
U = −κV ; V ′ +

λ

sin θ
V = κU, (C.39)

the (C.38) system becomes:

i
(
E +

α

r

)
D +D′ +

κ

r
B = ile−iβA,

−i
(
E +

α

r

)
C − C ′ − κ

r
A = −ireiβB, (C.40)

i
(
E +

α

r

)
B −B′ − κ

r
D = ile−iβC,

−i
(
E +

α

r

)
A+A′ +

κ

r
C = −ireiβD.
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To get the system equivalent to the Dirac equation, it is enough to suppress
the angle β and to assume the equality l = r = m. This does not change the
angular system (C.39), while in the place of (C.40) we obtain the following
system:

i
(
E +

α

r

)
D +D′ +

κ

r
B = imA,

−i
(
E +

α

r

)
C − C ′ − κ

r
A = −imB, (C.41)

i
(
E +

α

r

)
B −B′ − κ

r
D = imC,

−i
(
E +

α

r

)
A+A′ +

κ

r
C = −imD.

C.2 Kinetic momentum operators
We established in [15] the form that the operators of kinetic momentum

have in space-time. With the Pauli algebra we have (a detailed calculation
is in [23] A.3):

J1ϕ =
(
d1 +

1

2
σ23

)
ϕσ21 ; d1 = x2∂3 − x3∂2 = − sinφ ∂θ −

cosφ

tan θ
∂φ,

J2ϕ =
(
d2 +

1

2
σ31

)
ϕσ21 ; d2 = x3∂1 − x1∂3 = cosφ ∂θ −

sinφ

tan θ
∂φ,

J3ϕ =
(
d3 +

1

2
σ12

)
ϕσ21 ; d3 = x1∂2 − x2∂1 = ∂φ. (C.42)

We indeed also have:
J2 = J2

1 + J2
2 + J2

3 . (C.43)
From (C.42) we obtain:

J3ϕ = λϕ⇐⇒ ϕ = ϕ(x0, r, θ)eλφi3 . (C.44)

Hence the ϕ wave satisfying (C.8) is a proper vector of J3 and λ is the
magnetic quantum number. And for a wave ϕ satisfying (C.8), we have:

J2ϕ = j(j + 1)ϕ, (C.45)

if and only if:

∂2θθX +
[(
j +

1

2

)2
− λ2

sin2 θ

]
X − λ

cos θ

sin2 θ
σ12Xσ12 = 0. (C.46)

At the second order (C.39) implies:

0 = U ′′ +
(
κ2 − λ2

sin2 θ

)
U + λ

cos θ

sin2 θ
U (C.47)

0 = V ′′ +
(
κ2 − λ2

sin2 θ

)
V − λ

cos θ

sin2 θ
V (C.48)

0 = ∂2θθX +
(
κ2 − λ2

sin2 θ

)
X − λ

cos θ

sin2 θ
σ12Xσ12, (C.49)
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and therefore ϕ is a proper vector of J2, with the proper value j(j + 1), if
and only if:

κ2 =
(
j +

1

2

)2
; |κ| = j +

1

2
; j = |κ| − 1

2
. (C.50)

With the definition of S in (C.3) and with (C.8) we can see that the change
of φ into φ+ 2π conserves the same value for the wave if and only if λ has
a half-integer value. Only in this case is the wave correctly defined. The
general results for the angular momentum operators then imply:

j =
1

2
,
3

2
,
5

2
, · · · ; κ = ±1, ±2, ±3, · · · ; λ = −j, −j + 1, · · · j − 1, j.

(C.51)
To solve the angular system we let, if λ > 0 and with C = C(θ):

U = sinλ θ
[
sin
(θ
2

)
C ′ −

(
κ+

1

2
− λ

)
cos
(θ
2

)
C
]
,

V = sinλ θ
[
cos
(θ
2

)
C ′ +

(
κ+

1

2
− λ

)
sin
(θ
2

)
C
]
.

(C.52)

While if λ < 0 we let:

U = sin−λ θ
[
cos
(θ
2

)
C ′ +

(
κ+

1

2
+ λ

)
sin
(θ
2

)
C
]
,

V = sin−λ θ
[
− sin

(θ
2

)
C ′ +

(
κ+

1

2
+ λ

)
cos
(θ
2

)
C
]
.

(C.53)

The angular system (C.39) is therefore equivalent [12] to the differential
equation:

0 = C ′′ +
2|λ|
tan θ

C ′ +
[(
κ+

1

2

)2
− λ2

]
C. (C.54)

The change of variable:

z = cos θ ; f(z) = C[θ(z)], (C.55)

then gives the differential equation of the Gegenbauer polynomials 3:

0 = f ′′(z)− 1 + 2|λ|
1− z2

zf ′(z) +
(κ+ 1

2 )
2 − λ2

1− z2
f(z). (C.56)

And we get, as the only integrable function:

C(θ)

C(0)
=

∞∑
n=0

(|λ| − κ− 1
2 )n(|λ|+ κ+ 1

2 )n

( 12 + |λ|)nn!
sin2n

(θ
2

)
, (C.57)

3. When we solve the Dirac equation with Darwin’s method, meaning with the ad
hoc operators, we obtain some Legendre polynomials and spherical harmonics. Here,
working with ϕ, which is equivalent to employing the Weyl spinors ξ and η, we obtain
the Gegenbauer polynomials, and it is the degree of these polynomials that gives the
needed quantum number.
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with:

(a)0 = 1 (a)1 = a, (a)n = a(a+ 1) . . . (a+ n− 1). (C.58)

The C(0) term is a factor of U and V , its argument may be absorbed by
the δ of (C.7), and its modulus may be transferred to the radial functions.
We can then let C(0) = 1, which gives:

C(θ) =

∞∑
n=0

(|λ| − κ− 1
2 )n(|λ|+ κ+ 1

2 )n

( 12 + |λ|)nn!
sin2n

(θ
2

)
. (C.59)

Since we have the (C.50) conditions on λ and κ, an integer n always exists
such that:

|λ|+ n = |κ+
1

2
|, (C.60)

and this constrains the (C.59) series to be a finite sum, thus U and V are
integrable. And since U and V have real values, we have:

eiβ =
AD∗U2 + CB∗V 2

|AD∗U2 + CB∗V 2|
. (C.61)

C.3 Resolution of the radial system
We change the radial variable as follows:

x = mr ; ϵ =
E

m
; a(x) = A(r) = A

( x
m

)
, (C.62)

b(x) = B(r) ; c(x) = C(r) ; d(x) = D(r).

The (C.41) system becomes:

0 = −
(
ϵ+

α

x

)
d+ id′ + i

κ

x
b+ e−iβ l

m
a, (C.63)

0 = −
(
ϵ+

α

x

)
c+ ic′ + i

κ

x
a+ eiβ

r

m
b, (C.64)

0 = −
(
ϵ+

α

x

)
b− ib′ − i

κ

x
d+ e−iβ l

m
c, (C.65)

0 = −
(
ϵ+

α

x

)
a− ia′ − i

κ

x
c+ eiβ

r

m
d. (C.66)

To obtain a probability current we use radial functions, as in the angular
system, and for the same reason: they are polynomial functions and not
infinite series. We thus let:

a := e−Λxxs(a0 + a1x+ · · ·+ anx
n),

b := e−Λxxs(b0 + b1x+ · · ·+ bnx
n), (C.67)

c := e−Λxxs(c0 + c1x+ · · ·+ cnx
n),

d := e−Λxxs(d0 + d1x+ · · ·+ dnx
n).
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Equation (C.66) is equivalent to:

0 = −ϵ( + a0x+ · · ·+ an−1x
n + anx

n+1)

−α(a0 + a1x+ · · ·+ anx
n)

+iΛ( + a0x+ · · ·+ an−1x
n + anx

n+1)

−is(a0 + a1x+ · · ·+ anx
n)

−i( + a1x+ · · ·+ nanx
n)

−iκ(c0 + c1x+ · · ·+ cnx
n) (C.68)

+
r

m
eiβ( + d0x+ · · ·+ dn−1x

n + dnx
n+1).

Similarly equation (C.65) is equivalent to:

0 = −ϵ( + b0x+ · · ·+ bn−1x
n + bnx

n+1)

−α(b0 + b1x+ · · ·+ bnx
n)

+iΛ( + b0x+ · · ·+ bn−1x
n + bnx

n+1)

−is(b0 + b1x+ · · ·+ bnx
n)

−i( + b1x+ · · ·+ nbnx
n)

−iκ(d0 + d1x+ · · ·+ dnx
n) (C.69)

+
l

m
e−iβ( + c0x+ · · ·+ cn−1x

n + cnx
n+1).

Then equation (C.64) is equivalent to:

0 = −ϵ( + c0x+ · · ·+ cn−1x
n + cnx

n+1)

−α(c0 + c1x+ · · ·+ cnx
n)

−iΛ( + c0x+ · · ·+ cn−1x
n + cnx

n+1)

+is(c0 + c1x+ · · ·+ cnx
n)

+i( + c1x+ · · ·+ ncnx
n)

+iκ(a0 + a1x+ · · ·+ anx
n) (C.70)

+
r

m
eiβ( + b0x+ · · ·+ bn−1x

n + bnx
n+1).

And equation (C.63) is equivalent to:

0 = −ϵ( + d0x+ · · ·+ dn−1x
n + dnx

n+1)

−α(d0 + d1x+ · · ·+ dnx
n)

−iΛ( + d0x+ · · ·+ dn−1x
n + dnx

n+1)

+is(d0 + d1x+ · · ·+ dnx
n)

+i( + d1x+ · · ·+ ndnx
n)

+iκ(b0 + b1x+ · · ·+ bnx
n) (C.71)

+
l

m
e−iβ( + a0x+ · · ·+ an−1x

n + anx
n+1).
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We thus obtain three kinds of systems: with index 0, with index between 0
and n, and with index n. With the null index the system depends only on
α, κ and s:

0 = (−α− is)a0 − iκc0 ; 0 = (−α− is)b0 − iκd0,

0 = iκa0 + (−α+ is)c0 ; 0 = iκb0 + (−α+ is)d0. (C.72)

This system is exactly the same as with the linear Dirac equation. It is
constituted by two subsystems. We obtain a nonzero solution only if the
determinant of each subsystem is null, and thus only if s is such that:

0 = (−α− is)(−α+ is)− κ2; κ2 = s2 + α2; s =
√
κ2 − α2. (C.73)

The condition κ ̸= 0 comes from here. System (C.72) is then reduced to:

c0 =
iα− s

κ
a0; d0 =

iα− s

κ
b0. (C.74)

With the n index we have the following system :

0 = (−ϵ+ iΛ)an +
r

m
eiβdn; 0 = (−ϵ+ iΛ)bn +

l

m
e−iβcn;

0 = (−ϵ− iΛ)cn +
r

m
eiβbn; 0 = (−ϵ− iΛ)dn +

l

m
e−iβan. (C.75)

This system forms two similar subsystems, with same determinant D. A
nonzero solution exists only if the determinant is null, which gives:

0 = D =

∣∣∣∣−ϵ+ iΛ r
me

iβ

l
me

−iβ −ϵ− iΛ

∣∣∣∣ = ϵ2 + Λ2 − lr

m2
,

0 = D ⇔ lr

m2
= ϵ2 + Λ2, (C.76)

To solve the linear Dirac equation we used to let ϵ2 + Λ2 = 1. This should
be the case if there would be equality between l and r. System (C.75) is
equivalent to:

dn =
l

m
e−iβ(ϵ− iΛ)an, (C.77)

cn =
r

m
eiβ(ϵ− iΛ)bn. (C.78)

With the n = 0 case, that is the case of radial polynomials reduced to
constant terms, the radial system is reduced to (C.74), (C.77) and (C.78),
and we thus have:

d0 =
l

m
e−iβ(ϵ− iΛ)a0 =

iα− s

κ
b0, (C.79)

c0 =
r

m
eiβ(ϵ− iΛ)b0 =

iα− s

κ
a0. (C.80)
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This gives the following system:

l

m
e−iβ(ϵ− iΛ)a0 −

iα− s

κ
b0 = 0, (C.81)

− iα− s

κ
a0 +

r

m
eiβ(ϵ− iΛ)b0 = 0.

This system has a nonzero solution only if its determinant is null, which
gives:

0 =
lr

m2
(ϵ− iΛ)2 − (s− iα)2

κ2
, (C.82)

√
lr

m
(ϵ− iΛ) = ±s− iα

|κ|
. (C.83)

The separation of this equation into real and imaginary parts allows us only
the + sign, because s, α, ϵ and Λ are positive. That is how the Dirac theory
obtains the true number 2n2 for the energy levels with principal quantum
number n := |κ|+ n [54] (explained in 1.5.7). That gives:

Λ = ν
α

κ
; ϵ = ν

s

κ
; αϵ = sΛ, (C.84)

ν2 = ϵ2 + Λ2 = ϵ2 +
ϵ2α2

s2
=
ϵ2(s2 + α2)

s2
=
ϵ2κ2

s2
, (C.85)

ϵ =
νs

κ
= ν

√
1− α2

κ2
=

ν√
1 +

α2

(n+ s)2

. (C.86)

We hence obtain Sommerfeld’s formula (C.86) with n = 0 and ν instead of
1 in the numerator. To account for the Lamb effect, which increases the
energy of 1s1/2 states by 8.2 GHz, it is enough to take, for κ = 1:

ν = 1 + 6.615× 10−11. (C.87)

With n > 0 the system with index between 0 and n is:

0 = (−ϵ+ iΛ)an−1 − [α+ i(s+ n)]an − iκcn +
r

m
eiβdn−1, (C.88)

0 = (−ϵ+ iΛ)bn−1 − [α+ i(s+ n)]bn − iκdn +
l

m
e−iβcn−1, (C.89)

0 = (−ϵ− iΛ)cn−1 + [−α+ i(s+ n)]cn + iκan +
r

m
eiβbn−1, (C.90)

0 = (−ϵ− iΛ)dn−1 + [−α+ i(s+ n)]dn + iκbn +
l

m
e−iβan−1, . (C.91)

Hence we multiply (C.88) by l
me

−iβ , likewise (C.91) by ϵ− iΛ, and we add
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the products. This suppresses terms with index n− 1, and yields:

0 =− [α+ i(s+ n)]
l

m
e−iβan + iκ(ϵ− iΛ)bn

− iκ
l

m
e−iβcn + [−α+ i(s+ n)](ϵ− iΛ)dn (C.92)

Using (C.77) and (C.78) this gives:

0 =
[
− [α+ i(s+ n)]

ϵ− iΛ
+ [−α+ i(s+ n)](ϵ− iΛ)

]
dn

+ iκ
[m
r

− l

m

]
e−iβcn (C.93)

This reveals a relation between dn and cn. We may obtain another relation
by multiplying (C.89) by r

me
iβ , likewise (C.90) by ϵ− iΛ, and then adding

the products, which gives:

0 =iκ(ϵ− iΛ)an − [α+ i(s+ n)]
r

m
eiβbn

+ (ϵ− iΛ)[−α+ i(s+ n)]cn − iκ
r

m
eiβdn. (C.94)

Using again (C.77) and (C.78) we obtain another equation with only dn and
cn:

0 = iκ
(m
l
− r

m

)
eiβdn + 2[Λ(s+ n)− αϵ]cn. (C.95)

We thus consider the following system:

0 =
[
− [α+ i(s+ n)]

ϵ− iΛ
+ [−α+ i(s+ n)](ϵ− iΛ)

]
dn

+ iκ
[m
r

− l

m

]
e−iβcn, (C.96)

0 =iκ
(m
l
− r

m

)
eiβdn + 2[Λ(s+ n)− αϵ]cn.

The necessity of normalizing the wave implies that the series we used must
be polynomial functions. Hence an integer n must exist such that an . . . dn
are all zero. The determinant of the (C.96) system must thus be null:

0 =
lr

m2

[
− [α+ i(s+ n)] + [−α+ i(s+ n)](ϵ− iΛ)2

]2
+ κ2(ϵ− iΛ)2(1− ϵ2 − Λ2)2. (C.97)

Hence, dividing by ν2 = lr
m2 = ϵ2 + Λ2 we obtain:

0 =
[
− [α+ i(s+ n)] + [−α+ i(s+ n)](ϵ− iΛ)2

]2
+ κ2(ϵ− iΛ)2

(
ν − 1

ν

)2
. (C.98)
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To simplify the calculation, we let:

s+ n =: αS; τ :=
κ

2α

(
ν − 1

ν

)
, (C.99)

which gives:

0 =
[
− (1 + iS) + (−1 + iS)(ϵ− iΛ)2

]2
−
[κ
α
(Λ + iϵ)

(
ν − 1

ν

)]2
. (C.100)

This equation is simplified if a unique mass term exists, which means ν = 1.
We then have:

0 = −(1 + iS) + (−1 + iS)(ϵ− iΛ)2. (C.101)

Separating the real and imaginary parts, we obtain:

0 = −1− ϵ2 + Λ2 + 2SϵΛ, (C.102)

0 = −S + S(ϵ2 − Λ2) + 2ϵΛ. (C.103)

This last equation gives:

ϵΛ =
S

1 + S2
; 0 = −1− ϵ2 + (1− ϵ2) + 2S

S

1 + S2
,

ϵ2 =
S2

1 + S2
=

(s+ n)2

α2 + (s+ n)2
; ϵ =

1√
1 +

α2

(s+ n)2

. (C.104)

This is Sommerfeld’s formula obtained with the Dirac equation. We know
that this formula cannot account for the Lamb effect.

If we don’t suppose ν = 1, (C.100) may be read as:

(A+ iB)2 = (C + iD)2; A = −1− ϵ2 + Λ2 + 2SϵΛ; C = 2Λτ,

B = −S + 2ϵΛ + S(ϵ2 − Λ2); D = 2ϵτ. (C.105)

There are two possibilities: either A = C and B = D, or A = −C and
B = −D. The first possibility gives us:

−1− ϵ2 + Λ2 + 2SϵΛ = 2Λτ, (C.106)

−S + 2ϵΛ + S(ϵ2 − Λ2) = 2ϵτ. (C.107)

We use with (C.106), the relation Λ2 = ν2 − ϵ2, which gives:

2(Sϵ− τ)Λ = 1 + ϵ2 − (ν2 − ϵ2). (C.108)

Thus we have:

Λ =
2ϵ2 + 1− ν2

2(Sϵ− τ)
. (C.109)
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Next we use (C.107):

2ϵΛ = S(1 + ν2 − 2ϵ2) + 2ϵτ, (C.110)

2ϵ
2ϵ2 + 1− ν2

2(Sϵ− τ)
= S(1 + ν2 − 2ϵ2) + 2ϵτ, (C.111)

2ϵ3 + (1− ν2)ϵ = (Sϵ− τ)[S(1 + ν2 − 2ϵ2) + 2ϵτ ]. (C.112)

This gives the cubic equation:

0 = ϵ3 − 2Sτ

1 + S2
ϵ2 +

1− ν2 + 2τ2 − S2(1 + ν2)

2(1 + S2)
ϵ+

Sτ(1 + ν2)

2(1 + S2)
. (C.113)

To simplify the calculation, we use:

0 = ϵ3 − aϵ2 − bϵ+ c, (C.114)

a :=
2Sτ

1 + S2
=
κ(s+ n)(ν − 1/ν)

2[(s+ n)2 + α2)]
, (C.115)

b :=
−1 + ν2 − 2τ2 + S2(1 + ν2)

2(1 + S2)
, (C.116)

c :=
Sτ(1 + ν2)

2(1 + S2)
= a

1 + ν2

4
. (C.117)

Next we search for a solution such as:

ϵ =
a

3
+ u+ v, (C.118)

where u and v are two quantities to be determined, and u and v must satisfy:

(ϵ− a/3)3 = (u+ v)3; ϵ3 − aϵ2 +
a2

3
ϵ− a3

27
= u3 + 3u2v + 3uv2 + v3,

ϵ3 − aϵ2 = bϵ− c = −a
2

3
ϵ+

a3

27
+ u3 + v3 + 3uv(ϵ− a

3
), (C.119)

(b+
a2

3
− 3uv)ϵ = c+

a3

27
+ u3 + v3 − auv. (C.120)

This equality is satisfied by:

uv =
b

3
+
a2

9
; u3 + v3 = −c+ ab

3
+

2a3

27
. (C.121)

This sufficient solution gives:

uv =
−1 + ν2 − 2τ2 + S2(1 + ν2)

6(1 + S2)
+

4S2τ2

9(1 + S2)2
,

P := u3v3 =
[−1 + ν2 − 2τ2 + S2(1 + ν2)

6(1 + S2)
+

4S2τ2

9(1 + S2)2

]3
, (C.122)
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S := u3 + v3 =
2Sτ [−1 + ν2 − 2τ2 + S2(1 + ν2)]

6(1 + S2)2

+
2(2Sτ)3

[3(1 + S2)]3
− Sτ(1 + ν2)

2(1 + S2)
(C.123)

That allows us to reduce the calculation to the resolution of the following
equation:

0 = x2 − Sx+P,

∆ = S2 − 4P. (C.124)

The rest depends on the sign of ∆. For instance, for 2s1/2 and 2p1/2 states,
in the first case, we suppose:

ν = 1 + 9.29× 10−12, (C.125)

which gives;

n = 1; κ = 1; s =
√
1− α2 ≈ 0.999973374,

ν − 1/ν ≈ 1.85798× 10−11; S ≈ 274.06834955145, (C.126)

τ ≈ 1.273051× 10−9; a ≈ 9.2899× 10−12

b ≈ 0.999986686993; c ≈ 4.64495× 10−12,

uv ≈ 0.333328895664; S ≈ −1.548358× 10−12

P ≈ 0.037035557834; ∆ ≈ −0.14814223134.

The quadratic equation thus has two conjugate solutions:

u3 =
S+ i

√
−S2 + 4P

2
; v3 =

S− i
√
S2 − 4P

2
(C.127)

|u3| = [S2 + (−S2 + 4P)]1/2/2 =
√
P. (C.128)

We thus let:
u3 :=

√
Pe3iδ, (C.129)

that gives:

tan(3δ) =

√
−S2 + 4P

S
; 3δ ≈ −1.570796326791, (C.130)

δ =
1

3
tan−1

(√4P

S2
− 1
)
mod

2π

3
≈ −0.523598775597,

u = P
1
6 eiδ; v = u = P

1
6 e−iδ,

ϵ =
a

3
+ u+ v =

a

3
+ 2P

1
6 cos(δ) ≈ 0.9999933434784. (C.131)

That gives Sommerfeld’s formula, including the Lamb shift.
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For 2p1/2 states, supposing ν = 1 + 10−14, we have:

n = 1; κ = −1; s =
√

1− α2 ≈ 0.999973374,

ν − 1/ν ≈ 2× 10−14; τ ≈ −1.369264× 10−12

a ≈ −10−14; b ≈ 0.999986686984,

c ≈ −5× 10−15; uv ≈ 0.333328895661, (C.132)

S ≈ 1.666× 10−15; P ≈ 0.037035557833,

∆ ≈ −0.14814223133; 3δ ≈ 1.570796326795,

δ ≈ 0.523598775598; ϵ ≈ 0.99999334346992.

To obtain (C.100) the second possibility is such that:

−1− ϵ2 + Λ2 + 2SϵΛ = −2Λτ, (C.133)

−S + 2ϵΛ + S(ϵ2 − Λ2) = −2ϵτ. (C.134)

We use in (C.133) the relation Λ2 = ν2 − ϵ2, which gives:

2(Sϵ+ τ)Λ = 1 + ϵ2 − (ν2 − ϵ2). (C.135)

That gives:

Λ =
2ϵ2 + 1− ν2

2(Sϵ+ τ)
. (C.136)

Then we use (C.134):

2ϵΛ = S(1 + ν2 − 2ϵ2)− 2ϵτ, (C.137)

2ϵ
2ϵ2 + 1− ν2

2(Sϵ+ τ)
= S(1 + ν2 − 2ϵ2)− 2ϵτ, (C.138)

2ϵ3 + (1− ν2)ϵ = (Sϵ+ τ)[S(1 + ν2 − 2ϵ2)− 2ϵτ ]. (C.139)

This leads to the cubic equation:

0 = ϵ3 +
2Sτ

1 + S2
ϵ2 +

1− ν2 + 2τ2 − S2(1 + ν2)

2(1 + S2)
ϵ− Sτ(1 + ν2)

2(1 + S2)
. (C.140)

And this equation is what we obtain from (C.113) by changing the sign of
κ and thus τ . We thus obtain the same results.

C.4 Tensor densities
The wave function ϕ is not the only object of Dirac theory. Tensor den-

sities, with or without partial derivatives of ϕ, are also important quantities
to investigate: this is the aim of this section. We encountered in Chapter
1 four space-time vectors: D = ϕσµϕ

†, and four other quantities without
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derivatives of ϕ, which are ϕσµϕ. Moreover, we obtain two kinds of currents,
the J = D0 = ϕϕ† current, and also the J current defined in (1.203), which
is proportional to J only if l = r. We have:

J =
m

kl
L1L1† +

m

kr
R1R1†, (C.141)

=
m

kl

[
ϕ
1− σ3

2

][
ϕ
1− σ3

2

]†
+
m

kr

[
ϕ
1 + σ3

2

][
ϕ
1 + σ3

2

]†
=
m

k
ϕ
[1− σ3

2l
+

1 + σ3
2r

]
ϕ†

=
m

k
ϕ

(
r−1 0
0 l−1

)
ϕ† =

m

k
ϕm̂−1ϕ†. (C.142)

Using (C.8) and (C.26) we obtain:

J =
m

k
ΩXe(λφ−Ex0+δ)i3m̂−1e−(λφ−Ex0+δ)i3X†Ω†

=
m

k
ΩXm̂−1X†Ω† =

m

k
ΩJΩ†, (C.143)

J = Xm̂−1X† =

aa∗

r
+

bb∗

l

ac∗

r
− db∗

l
ca∗

r
− bd∗

l

cc∗

r
+

dd∗

l

 . (C.144)

Using (C.37) we obtain, as the probability density:

J0 =
m

k
ΩJ0Ω† =

m

2kr2 sin θ

[(AA∗

r
+
DD∗

l

)
U2 +

(CC∗

r
+
BB∗

l

)
V 2
]
.

(C.145)
We also have:

Dµ = ϕσµϕ
† = ΩXe(λφ−Ex0+δ)i3σµe

−(λφ−Ex0+δ)i3X†Ω†,

Sµ = ϕσµϕ = ΩXe(λφ−Ex0+δ)i3σµe
−(λφ−Ex0+δ)i3XΩ†.

If µ = 0 or µ = 3, we obtain:

D0 = ΩXX†Ω†; D3 = ΩXσ3X
†Ω†, (C.146)

S0 = ΩXXΩ†; S3 = ΩXσ3XΩ†. (C.147)

We also have:

XX† =

(
a −b∗

c d∗

)(
a∗ c∗

−b d

)
=

(
aa∗ + bb∗ ac∗ − db∗

ca∗ − bd∗ cc∗ + dd∗

)
=

(
d00 + d30 d10 − id20
d10 + id20 d00 − d30

)
(C.148)

Xσ3X
† =

(
a −b∗

c d∗

)(
1 0
0 −1

)(
a∗ c∗

−b d

)
=

(
aa∗ − bb∗ ac∗ + db∗

ca∗ + bd∗ cc∗ − dd∗

)(
d03 + d33 d13 − id23
d13 + id23 d03 − d33

)
. (C.149)
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This gives:

2d00 = aa∗ + bb∗ + cc∗ + dd∗ = (AA∗ +DD∗)U2 + (BB∗ + CC∗)V 2,

2d30 = aa∗ + bb∗ − cc∗ − dd∗ = (AA∗ −DD∗)U2 + (BB∗ − CC∗)V 2,

2d10 = ca∗ + ac∗ − bd∗ − db∗ = (CA∗ +AC∗ −BD∗ −DB∗)UV,

2id20 = ca∗ − ac∗ − bd∗ + db∗ = (CA∗ −AC∗ −BD∗ +DB∗)UV.
(C.150)

2d03 = aa∗ − bb∗ + cc∗ − dd∗ = (AA∗ −DD∗)U2 + (−BB∗ + CC∗)V 2,

2d33 = aa∗ − bb∗ − cc∗ + dd∗ = (AA∗ +DD∗)U2 − (BB∗ + CC∗)V 2,

2d13 = ca∗ + ac∗ + bd∗ + db∗ = (CA∗ +AC∗ +BD∗ +DB∗)UV,

2id23 = ca∗ − ac∗ + bd∗ − db∗ = (CA∗ −AC∗ +BD∗ −DB∗)UV.
(C.151)

We also have:

D0 = Dν
0σν =

1

r
√
sin θ

e−φi3/2e−θi2/2dν0σµe
θi2/2eφi3/2

1

r
√
sin θ

=
1

r2 sin θ
e−φi3/2[d00 + d20σ2 + (d10σ1 + d30σ3)e

θi2 ]eφi3/2 (C.152)

=
1

r2 sin θ

d00 + (d10 cos θ cosφ− d20 sinφ+ d30 sin θ cosφ)σ1
+(d10 cos θ sinφ+ d20 cosφ+ d30 sin θ sinφ)σ2

+(−d10 sin θ + d30 cos θ)σ3

 .
D3 = Dν

3σν =
1

r
√
sin θ

e−φi3/2e−θi2/2dν3σµe
θi2/2eφi3/2

1

r
√
sin θ

=
1

r2 sin θ
e−φi3/2[d03 + d23σ2 + (d13σ1 + d33σ3)e

θi2 ]eφi3/2 (C.153)

=
1

r2 sin θ

d03 + (d13 cos θ cosφ− d23 sinφ+ d33 sin θ cosφ)σ1
+(d13 cos θ sinφ+ d23 cosφ+ d33 sin θ sinφ)σ2

+(−d13 sin θ + d33 cos θ)σ3

 .
Similarly with Sµ quantities we have:

XX =

(
a −b∗

c d∗

)(
d∗ b∗

−c a

)
=

(
ad∗ + cb∗ ab∗ − ab∗

cd∗ − cd∗ cb∗ + ad∗

)
= ad∗ + cb∗, (C.154)

Xσ3X =

(
a −b∗

c d∗

)(
1 0
0 −1

)(
d∗ b∗

−c a

)
=

(
ad∗ − cb∗ ab∗ + ab∗

cd∗ + cd∗ cb∗ − ad∗

)
= (ad∗ − cb∗)σ3 + ab∗(σ1 + iσ2) + cd∗(σ1 − iσ2). (C.155)
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C.4.1 Low value cases
If κ = 1 and λ = 1/2, we obtain:

C(θ) =

∞∑
n=0

(−1)n(2)n
(1)nn!

sin2n
θ

2
= 1− 2 sin2

(θ
2

)
= cos θ, (C.156)

C ′(θ) = − sin θ; U = −
√
sin θ cos

(θ
2

)
; V = −

√
sin θ sin

(θ
2

)
. (C.157)

We then have:

XX = AD∗U2 + CB∗V 2 = CB∗V 2

=
sin θ

2
[AD∗ + CB∗ + cos θ(AD∗ − CB∗)], (C.158)

eiβ =
XX

|XX|
=

AD∗ + CB∗ + cos θ(AD∗ − CB∗)

|AD∗ + CB∗ + cos θ(AD∗ − CB∗)|
. (C.159)

Thus the Yvon-Takabayasi angle is a function of both the radial parameter
r and of the θ angle. Then, if κ = 1 and λ = −1/2, we obtain:

C(θ) = cos θ; C ′(θ) = − sin θ, (C.160)

U = −
√
sin θ sin

(θ
2

)
; V =

√
sin θ cos

(θ
2

)
. (C.161)

We thus have:

XX = AD∗U2 + CB∗V 2

=
sin θ

2
[AD∗ + CB∗ − cos θ(AD∗ − CB∗)], (C.162)

eiβ =
XX

|XX|
=

AD∗ + CB∗ − cos θ(AD∗ − CB∗)

|AD∗ + CB∗ − cos θ(AD∗ − CB∗)|
. (C.163)

We recall that if κ = 1 we have j = |κ|−1/2 = 1/2, the only possible values
for λ are 1/2 and −1/2. Thus as soon as κ = 1 we only have two kinds of
states: first if λ = 1/2:

ϕ = ΩXe(
φ
2 −Ex0)i3

=
1

r
√
sin θ

e−
φ
2 i3e−

θ
2 i2

(
AU −B∗V
CV D∗U

)
e(

φ
2 −Ex0)i3 . (C.164)

We let:

A := rse−ΛmrPa; Pa := a0 + a1r + · · ·+ anr
n, (C.165)

B := rse−ΛmrPb; Pb := b0 + b1r + · · ·+ bnr
n, (C.166)

C := rse−ΛmrPc; Pc := c0 + c1r + · · ·+ cnr
n, (C.167)

D := rse−ΛmrPd; Pd := d0 + d1r + · · ·+ dnr
n. (C.168)
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And since U = −
√
sin θ cos θ

2 and V = −
√
sin θ sin θ

2 , we obtain:

ϕ = rs−1e−Λmre−
φ
2 i3Me

φ
2 i3e−Ex0i3 ,

M =

(
Pc−Pa

2 − Pa+Pc

2 cos θ
P∗

b +P∗
d

2 sin θ

−Pa+Pc

2 sin θ
P∗

b −P∗
d

2 − P∗
b +P∗

d

2 cos θ

)
(C.169)

We then have:

M =

(Pc−Pa

2 0

0
P∗

b −P∗
d

2

)
−
(
cos θ − sin θ
sin θ cos θ

)(Pa+Pc

2 0

0
P∗

b +P∗
d

2

)
=M− − e−θi2M+ (C.170)

M− : = (Pc − Pa)
1 + σ3

4
+ (P ∗

b − P ∗
d )

1− σ3
4

, (C.171)

M+ : = (Pc + Pa)
1 + σ3

4
+ (P ∗

b + P ∗
d )

1− σ3
4

. (C.172)

That gives:

ϕ = rs−1e−Λmr
(
M− − x⃗

r
σ3M+

)
e−Ex0i3 , (C.173)

ϕ̂ = rs−1e−Λmr
(
M̂− − x⃗

r
σ3M̂+

)
e−Ex0i3 . (C.174)

With κ = 1 and λ = −1/2 we have:

ϕ = rs−1e−Λmre−
φ
2 i3(−i2)Me

−φ
2 i3e−Ex0i3 ,

M =

(
Pc−Pa

2 + Pa+Pc

2 cos θ −P∗
b +P∗

d

2 sin θ
Pa+Pc

2 sin θ
P∗

b −P∗
d

2 +
P∗

b +P∗
d

2 cos θ

)

ϕ = rs−1e−Λmr
[
− i2M− − x⃗

r
σ1M+

]
e−Ex0i3 . (C.175)

If κ = −1 and λ = 1/2 we obtain:

C(θ) =

∞∑
n=0

( 12 + 1− 1
2 )n(

1
2 − 1 + 1

2 )n

( 12 + 1
2 )nn!

sin2n(
θ

2
)

=

∞∑
n=0

(1)n(0)n
(1)nn!

sin2n
(θ
2

)
= 1, (C.176)

C ′(θ) = 0; U =
√
sin θ

[
0− (−1) cos

θ

2

]
=

√
sin θ cos

θ

2
, (C.177)

V =
√
sin θ

[
0 + (−1) sin

θ

2

]
= −

√
sin θ sin

θ

2
. (C.178)

U2 = sin θ cos2
θ

2
; V 2 = sin θ sin2

θ

2
,

U2 + V 2 = sin θ; U2 − V 2 = sin θ cos θ; 2UV = − sin2 θ, (C.179)

2d00 = (AA∗ +DD∗) sin θ cos2
θ

2
+ (BB∗ + CC∗) sin θ sin2

θ

2
, (C.180)
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J0 = D0
0 =

d00
r2 sin θ

=
1

2r2

[
(AA∗ +DD∗) cos2

θ

2
+ (BB∗ + CC∗) sin2

θ

2

]
, (C.181)

J0 =
m

2kr2

[
(lAA∗ + rDD∗) cos2

θ

2
+ (rBB∗ + lCC∗) sin2

θ

2

]
. (C.182)

We have also:

ϕ = rs−1e−Λmre−
φ
2 i3e−

θ
2 i2

(
Pa cos

θ
2 P ∗

b sin θ
2

−Pc sin
θ
2 P ∗

d cos θ
2

)
e(

φ
2 −Ex0)i3

= rs−1e−Λmre−
φ
2 i3(M+ − e−θi2M−)e

(φ
2 −Ex0)i3

= rs−1e−Λmr(M+ − x⃗

r
σ3M−)e

−Ex0i3 . (C.183)

Similarly if κ = −1 and λ = −1/2 we again have C = 1 and C ′ = 0, and
thus (C.53) gives:

U =
√
sin θ

[
0 + (−1) sin

θ

2

]
= −

√
sin θ sin

θ

2
, (C.184)

V =
√
sin θ

[
0 + (−1) cos

θ

2

]
= −

√
sin θ cos

θ

2
. (C.185)

That implies:

U2 = sin θ sin2
θ

2
; V 2 = sin θ cos2

θ

2

U2 + V 2 = sin θ; U2 − V 2 = − sin θ cos θ; 2UV = sin2 θ. (C.186)

2d00 = (AA∗ +DD∗) sin θ sin2
θ

2
+ (BB∗ + CC∗) sin θ cos2

θ

2
,

J0 =
1

2r2

[
(AA∗ +DD∗) sin2

θ

2
+ (BB∗ + CC∗) cos2

θ

2

]
, (C.187)

J0 =
m

2kr2

[
(lAA∗ + rDD∗) sin2

θ

2
+ (rBB∗ + lCC∗) cos2

θ

2

]
.

These values are those of np1/2 states (n = n− 1, n > 0, κ = −1, j = 1/2).
The ϕ wave satsfies, with λ = −1/2 :

ϕ = rs−1e−Λmre−
φ
2 i3e−

θ
2 i2

(
−Pa sin

θ
2 P ∗

b cos θ
2

−Pc cos
θ
2 −P ∗

d sin θ
2

)
e(−

φ
2 −Ex0)i3

= rs−1e−Λmre−
φ
2 i3(M+ + e−θi2M−)e

(−φ
2 −Ex0)i3

= rs−1e−Λmr(i2M+ +
x⃗

r
σ1M−)e

−Ex0i3 . (C.188)
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Appendix D

Miscellaneous

D.1 Gauge invariance SU(2) of the quarks

D.1.1 Group generated by P 1

We have in this case

ΨL = P+(Ψ); P 1(ΨL) = Γ0123ΨLΓ35; C = cos(θ); S = sin(θ), (D.1)
Ψ′

L = [exp(θP 1)](ΨL) = CΨL + SΓ0123ΨLΓ35, (D.2)

W ′1
µ =W 1

µ − 2

g2
∂µθ. (D.3)

This gives:(
L′n L̃′3+n

L
′3+n −L̂′n

)
= C

(
Ln L̃3+n

L
3+n −L̂n

)
+ S

(
iL̃3+n iLn

−iL3+n
iL̂n

)
. n = 2, 3, 4,

(D.4)

L′n = CLn + iSL̃3+n, (D.5)

L̃′3+n = CL̃3+n + iSLn. (D.6)

We now let:

2LnL3+n = Dn 3+n
L − idn 3+n

L . (D.7)

We deduce for the left currents:

Dn 3+n
L = LnL3+n + L̃3+nL̃n; dn 3+n

L = iLnL3+n − iL̃3+nL̃n, (D.8)

2D′n
L = Dn

L +D3+n
L + cos(2θ)(Dn

L −D3+n
L )− sin(2θ)dn 3+n

L , (D.9)

2D′3+n = Dn
L +D3+n

L − cos(2θ)(Dn
L −D3+n

L ) + sin(2θ)dn 3+n
L . (D.10)
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Adding and subtracting these equations we get:

D′n
L +D′3+n

L = Dn
L +D3+n

L , (D.11)

D′3+n
L −D′n

L = cos(2θ)(D3+n
L −Dn

L) + sin(2θ)dn 3+n
L . (D.12)

From these equations, we obtain the conservation of the total current Jq,
and also the difference between the left currents and the right currents. By
bringing together these equations and (2.124) we may see that they are
compatible with:

W 2 = dn 3+n
L ; W 3 = D3+n

L −Dn
L. (D.13)

D.1.2 Groups generated by P 2 and P 3

The calculation is completely similar to the previous section. In both
cases we obtain the value of W 1 as only additional result. And as before,
this value depends on the integer n. Also we are going to use a double
system of indices: we will denote as W j

n the potentials previously denoted
as W j acting on Ln. We will then have:

W 1
n = Dn 3+n

L ; W 2
n = dn 3+n

L ; W 3
n = D3+n

L −Dn
L. (D.14)

As in the previous section the sum of the left currents and the sum of
the rights currents are invariant, which implies the conservation of the Jq
current, and thus of mvq. This makes the system formed by the twelve wave
equations (6 right and 6 left) invariant under the SU(2) group.

D.2 Gauge invariance under SU(3)
We use the following transformation:

Ψ′ = [exp(θΛ1)](Ψ),

Ψ′2 = CΨ2 + SiΨ3; C = cos(θ); S = sin(θ), (D.15)

Ψ′3 = CΨ3 + SiΨ2; Ψ′1 = Ψ1; Ψ′4 = Ψ4. (D.16)

Here we can forget about Ψ1 and Ψ4 which do not vary. The gauge invari-
ance means that the system:

∂∂∂Ψ2 = −g3
2
G1iΨ3 +mvqΨ

2γ12,

∂∂∂Ψ3 = −g3
2
G1iΨ2 +mvqΨ

3γ12. (D.17)

must be equivalent to the system:

∂∂∂Ψ′2 = −g3
2
G′1iΨ′3 +mvqΨ

′2γ12,

∂∂∂Ψ′3 = −g3
2
G′1iΨ′2 +mvqΨ

′3γ12. (D.18)
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Using (D.15) and (D.16) the system (D.17) is equivalent to (D.18) if and
only if:

G′1 = G1 − 2

g3
∂∂∂θ; h′11 = h11 − ∂∂∂θ. (D.19)

The equality (D.15) is equivalent to the following system:

L′2 = CL2 + iSL3; L̃′5 = CL̃5 + iSL̃6, (D.20)

R′2 = CR2 + iSR3; R̃′5 = CR̃5 + iSR̃6. (D.21)

Meanwhile the equality (D.16) is equivalent to the system:

L′3 = CL3 + iSL2; L̃′6 = CL̃6 + iSL̃5, (D.22)

R′3 = CR3 + iSR2; R̃′6 = CR̃6 + iSR̃5. (D.23)

These systems may be brought together: we obtain four systems with the
same structure:

L′2 = CL2 + iSL3; L′3 = CL3 + iSL2, (D.24)

R′2 = CR2 + iSR3; R′3 = CR3 + iSR2, (D.25)

L̃′5 = CL̃5 + iSL̃6; L̃′6 = CL̃6 + iSL̃5, (D.26)

R̃′6 = CR̃6 + iSR̃5; R̃′6 = CR̃6 + iSR̃5. (D.27)

These systems have the same form as those of the left waves for the weak
interaction. We can hence carry out similar calculations as in D.1.1. For
the left waves of the d quark with color r or g, we consider the currents:

D2
L = L2L̃2; D3

L = L3L̃3; D2 3
L − id2 3

L = 2L2L̃3, (D.28)

D2 3
L + id2 3

L = 2L3L̃2; D2 3
L = L2L̃3 + L3L̃2; d2 3

L = iL2L̃3 − iL3L̃2.
(D.29)

We then get:

D′2 3
L = D2 3

L ; D′2
L +D′3

L = D2
L +D3

L, (D.30)

d′2 3
L = cos(2θ)d2 3

L − sin(2θ)(D3
L −D2

L), (D.31)

D′3
L −D′2

L = cos(2θ)(D3
L −D2

L) + sin(2θ)d2 3
L . (D.32)

A comparison with the rotation made on the potentials by the gauge trans-
formation indicates that we can have:

h11 =
g3
2
D2 3

L ; h21 =
g3
2
d2 3
L ; h31 =

g3
2
(D3

L −D2
L). (D.33)

For the right waves of the d quark with color r or g we consider the currents:

D2
R = R2R̃2; D3

R = R3R̃3; D2 3
R − id2 3

R = 2R2R̃3, (D.34)

D2 3
R + id2 3

R = 2R3R̃2; D2 3
R = R2R̃3 +R3R̃2; d2 3

R = iR2R̃3 − iR3R̃2.
(D.35)
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We thus get :

D′2 3
R = D2 3

R ; D′2
R +D′3

R = D2
R +D3

R, (D.36)

d′2 3
R = cos(2θ)d2 3

R − sin(2θ)(D3
R −D2

R), (D.37)

D′3
R −D′2

R = cos(2θ)(D3
R −D2

R) + sin(2θ)d2 3
R . (D.38)

A comparison with the rotation made on the potentials by the gauge trans-
formation indicates that we can have:

h11 =
g3
2
D2 3

R ; h21 =
g3
2
d2 3
R ; h31 =

g3
2
(D3

R −D2
R). (D.39)

Hence, here we again see the dependence of the potentials on the wave which
they are acting on. We thus note:

hdL
1

1 =
g3
2
D2 3

L ; hdL
2

1 =
g3
2
d2 3
L ; hdL

3

1 =
g3
2
(D3

L −D2
L), (D.40)

hdR
1

1 =
g3
2
D2 3

R ; hdR
2

1 =
g3
2
d2 3
R ; hdR

3

1 =
g3
2
(D3

R −D2
R). (D.41)

For the left wave of the u quark with color r or g we consider the currents:

D5
L = L̃5L5; D6

L = L̃6L6; D5 6
L − id5 6

L = 2L̃5L6, (D.42)

D5 6
L + id5 6

L = 2L̃6L5; D5 6
L = L̃5L6 + L̃6L5; d5 6

L = iL̃5L6 − iL̃6L5.
(D.43)

We thus obtain:

D′5 6
L = D5 6

L ; D′5
L +D′6

L = D5
L +D6

L, (D.44)

d′5 6
L = cos(2θ)d5 6

L − sin(2θ)(D6
L −D5

L), (D.45)

D′6
L −D′5

L = cos(2θ)(D6
L −D5

L) + sin(2θ)d5 6
L . (D.46)

A comparison with the rotation made on the potentials by the gauge trans-
formation indicates that we can have:

huL
1
1 =

g3
2
D5 6

L ; huL
2
1 =

g3
2
d5 6
L ; huL

3
1 =

g3
2
(D6

L −D5
L). (D.47)

For the right wave of the u quark with color r or g we consider the currents:

D5
R = R̃5R5; D6

R = R̃6R6; D5 6
R − id5 6

R = 2R̃5R6, (D.48)

D5 6
R + id5 6

R = 2R̃6R5; D5 6
R = R̃5R6 + R̃6R5; d5 6

R = iR̃5R6 − iR̃6R5.
(D.49)

We then get:

D′5 6
R = D5 6

R ; D′5
R +D′6

R = D5
R +D6

R, (D.50)

d′5 6
R = cos(2θ)d5 6

R − sin(2θ)(D6
R −D5

R), (D.51)

D′6
R −D′5

R = cos(2θ)(D6
R −D5

R) + sin(2θ)d5 6
R . (D.52)

Finally, a comparison with the rotation made on the potentials by the gauge
transformation indicates that we can have:

huR
1
1 =

g3
2
D5 6

R ; huR
2
1 =

g3
2
d5 6
R ; huR

3
1 =

g3
2
(D6

R −D5
R). (D.53)
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D.3 Simplification of the wave equations
With (D.7) and (D.14) we have:

(W 1
n + iW 2

n)L
3+n

= (Dn 3+n
L + idn 3+n

L )L
3+n

= 2L̃3+nL̃nL
3+n

, (D.54)

L̃nL
3+n

= 2

(
0 0

−ηn2 ηn1

)(
η3+n
1 0
η3+n
2 0

)
=

(
0 0

2(−ηn2 η3+n
1 + ηn1 η

3+n
2 ) 0

)
.

And given that:

2(−ηn2 η3+n
1 + ηn1 η

3+n
2 ) = 2η̂n†η3+n = s3+nn

2 , (D.55)

L̃3+nL̃nL
3+n

=
√
2

(
0 η3+n

2

0 η3+n
1

)(
0 0

s3+nn
2 0

)
= s3+nn

2 L̃3+nσ1.

We also have:

W 3
nL̂

n = (D3+n −Dn)L̂n = L̃3+nL3+nL̂n − LnL̃nL̂n = L̃3+nL3+nL̂n,

(D.56)

L3+nL̂n = L̃nL
3+n

= s3+nn
2

σ1 − iσ2
2

= −s3+nn
2

σ1 − iσ2
2

= −L̃nL
3+n

,

W 3
nL̂

n = L̃3+nL3+nL̂n = −L̃3+nL̃nL
3+n

. (D.57)

Thus we obtain:

(W 1
n + iW 2

n)L
3+n −W 3

nL̂
n = 2L̃3+nL̃nL

3+n − (−L̃3+nL̃nL
3+n

)

= 3L̃3+nL̃nL
3+n

= −3W 3
nL̂

n. (D.58)

Furthermore:

(W 1
n − iW 2

n)L̂
n = (Dn 3+n

L − idn 3+n
L )L̂n = 2LnL3+nL̂n, (D.59)

L3+nL̂n = L̃nL
3+n

= −L̃nL
3+n

,

(W 1
n − iW 2

n)L̂
n = 2Ln(−L̃nL

3+n
) = −2LnL̃nL

3+n
= −2Dn

LL
3+n

, (D.60)

W 3
nL

3+n
= (D3+n

n −Dn
L)L

3+n
= −Dn

LL
3+n

,

(W 1
n − iW 2

n)L̂
n +W 3

nL
3+n

= −3Dn
LL

3+n
= 3W 3

nL
3+n

. (D.61)

For the gauge group of chromodynamics we have the same sort of simpli-
fication, we will see this in detail for one of the four cases, that of the left
wave of the d quark. With the gauge transformation generated by Γ1 and
with an angle θ we have:

(hdL
1

1 + ihdL
2

1)L̂
3 − hdL

3

1L̂
2 =

g3
2
[(D23

L + id23L )L̂3 − (D3
L −D2

L)L̂
2], (D.62)

L′2 = CL2 + iSL̃3; C = cos(θ); S = sin(θ), (D.63)

L̃′3 = CL̃3 + iSL2. (D.64)
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Only the indices change in comparison with (D.5) and (D.6), where for
n = 2 we have the same relations with indices 2 and 5 instead of the current
indices 2 and 3. And so we can employ the same procedure that carried out
for the weak interactions. We finally have:

hdL
1

1 =
g3
2
D23

L ; hdL
2

1 =
g3
2
d23L ; hdL

3

1 =
g3
2
(D3

L −D2
L), (D.65)

(hdL
1

1 + ihdL
2

1)L̂
3 − hdL

3

1L̂
2 = −3hdL

3

1L̂
2 = −3g3

2
D3

LL̂
2, (D.66)

(hdL
1

1 − ihdL
2

1)L̂
2 + hdL

3

1L̂
3 = 3hdL

3

1L̂
3 = −3g3

2
D2

LL̂
3. (D.67)

We obtain similar equations for the other indices, for the right waves and
for the u quark, this allows us to simplify the wave equations.

D.3.1 Gauge terms of the Lagrangian density
We consider the S part of the Lagrangian density L+ that gives the

gauge terms acting on the waves of the quarks:

S =

4∑
n=2

[ −imq1 η
n†σµ(ig1nµ)η

n − imq2 ξ
n†σ̂µ(ig2nµ)ξ

n

−imq3 η
3+n†σµ(ig3nµ)η

3+n − imq4 ξ
3+n†σ̂µ(ig4nµ)ξ

3+n

]

=

4∑
n=2

[ m
q1
g1nµη

n†σµηn + m
q2
g2nµξ

n†σ̂µξn

+m
q3
g3nµη

3+n†σµη3+n + m
q4
g4nµξ

3+n†σ̂µξ3+n

]
. (D.68)

We thus have:

S = S1 + S2 + S3 + S4; S1 =
m

q1

4∑
n=2

g1nµD
nµ
L ,

S2 =
m

q2

4∑
n=2

g2nµD
nµ
R ; S3 =

m

q3

4∑
n=2

g3nµD
3+nµ
L ; S4 =

m

q4

4∑
n=2

g4nµD
3+nµ
R .

(D.69)

With (3.142) the S1 term becomes:

q1
m
S1 =

(
− bµ

3
+ 3w3

2µ − 3hd3L3µ + 3hd3L1µ

)
D2µ

L (D.70)

+
(
− bµ

3
+ 3w3

3µ − 3hd3L1µ + 3hd3L2µ

)
D3µ

L

+
(
− bµ

3
+ 3w3

4µ − 3hd3L2µ + 3hd3L3µ

)
D4µ

L .

Grouping together similar terms we get:

q1
m
S1 = −1

3
b · (D2

L +D3
L +D4

L) + 3(w3
2 ·D2

L +w3
3 ·D3

L +w3
4 ·D4

L) (D.71)

− 3(hd3L3 ·D2
L + hd3L1 ·D3

L + hd3L2 ·D4
L) + 3(hd3L1 ·D2

L + hd3L2 ·D3
L + hd3L3 ·D4

L).
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And with (3.126) we have:

3(w3
2 ·D2

L +w3
3 ·D3

L +w3
4 ·D4

L) (D.72)

=
g2
2
[(D5

L −D2
L) ·D2

L + (D6
L −D3

L) ·D3
L + (D7

L −D4
L) ·D4

L

=
g2
2
(D5

L ·D2
L +D6

L ·D3
L +D7

L ·D4
L),

and since the chiral currents are on the light cone, their space-time length
is null. Next with (D.40) we have, hdL

1

1 = g3
2 D

2 3
L , hdL

2

1 = g3
2 d

2 3
L and hdL

3

1 =
g3
2 (D

3
L −D2

L). We thus get:

3(hd3L1 ·D2
L + hd3L2 ·D3

L + hd3L3 ·D4
L)

= 3
g3
2
[(D3

L −D2
L) ·D2

L + (D4
L −D3

L) ·D3
L + (D2

L −D4
L) ·D4

L] (D.73)

= 3
g3
2
(D3

L ·D2
L +D4

L ·D3
L +D2

L ·D4
L).

Similarly we have:

− 3(hd3L3 ·D2
L + hd3L1 ·D3

L + hd3L2 ·D4
L)

= −3
g3
2
[(D2

L −D4
L) ·D2

L + (D3
L −D2

L) ·D3
L + (D4

L −D3
L) ·D4

L] (D.74)

= 3
g3
2
(D4

L ·D2
L +D2

L ·D3
L +D3

L ·D4
L)

= 3
g3
2
(D3

L ·D2
L +D4

L ·D3
L +D2

L ·D4
L).

And if we use the sums of currents:

S25
L = D2

L +D5
L; S

36
L = D3

L +D6
L; S

47
L = D4

L +D7
L,

Sd
L = D2

L +D3
L +D4

L, (D.75)

we have:

(S25
L )2 = (D2

L)
2 + (D5

L)
2 + 2D2

L ·D5
L = 2D2

L ·D5
L, (D.76)

(Sd
L)

2 = (D2
L)

2 + (D3
L)

2 + (D4
L)

2 + 2D2
L ·D3

L + 2D3
L ·D4

L + 2D4
L ·D2

L

= 2(D2
L ·D3

L +D3
L ·D4

L +D4
L ·D2

L). (D.77)

And we thus get:

S1 =
m

q1

[
− g1

6
B · Sd

L +
g2
4

[
(S25

L )2 + (S36
L )2 + (S47

L )2
]
+

3g3
2

(Sd
L)

2
]
. (D.78)

Next for the right waves of the d quark we have:

q2
m
S2 =

2

3
b · (D2

R +D3
R +D4

R) (D.79)

+ 3(hd3R3 ·D2
R + hd3R1 ·D3

R + hd3R2 ·D4
R)− 3(hd3R1 ·D2

R + hd3R2 ·D3
R + hd3R3 ·D4

R).
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We now use the sum of the right currents:

Sd
R = D2

R +D3
R +D4

R, (D.80)

And we get:
S2 =

m

q2

[g1
3
B · Sd

R − 3
g3
2
(Sd

R)
2
]
. (D.81)

The calculation of the terms corresponding to the u quark is totally resem-
blant, and the same sums are introduced:

Su
L = D5

L +D6
L +D7

L; S
u
R = D5

R +D6
R +D7

R. (D.82)

For the left waves we have:

S3 =
m

q3

[
− g1

6
B · Su

L +
g2
4
[(S25

L )2 + (S36
L )2 + (S47

L )2] +
3g3
2

(Su
L)

2
]
. (D.83)

And we obtain for the right waves of the u quark:

S4 =
m

q4

[
− 2g1

3
B · Su

R − 3
g3
2
(Su

R)
2
]
. (D.84)

This gives:

S =
m

q1

[
− g1

6
B · Sd

L +
g2
4

[
(S25

L )2 + (S36
L )2 + (S47

L )2
]
+

3g3
2

(Sd
L)

2
]

+
m

q2

[g1
3
B · Sd

R − 3g3
2

(Sd
R)

2
]

(D.85)

+
m

q3

[
− g1

6
B · Su

L +
g2
4

[
(S25

L )2 + (S36
L )2 + (S47

L )2
]
+

3g3
2

(Su
L)

2
]

+
m

q4

[
− 2g1

3
B · Su

R − 3g3
2

(Su
R)

2
]
.

D.4 Calculation of Γρµν
D.4.1 Calculation of S(k) and A(k)

The Sk are bivectors in Cl3. So they read:

ϕσkϕ = Sk := E⃗k + iH⃗k, (D.86)

E⃗k := E1
kσ1 + E2

kσ2 + E3
kσ3,

H⃗k := H1
kσ1 +H2

kσ2 +H3
kσ3.

We thus have:

E1
k = S23

k ; E2
k = S31

k ; E3
k = S12

k ; Hj
k = Sj0

k . (D.87)
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Next we obtain:

∇S†
k = (∂0 − ∂⃗)(E⃗k − iH⃗k)

= −∂⃗ · E⃗k + (∂0E⃗k − ∂⃗ × H⃗k) + i(−∂⃗ × E⃗k − ∂0H⃗k) + i∂⃗ · H⃗k

= jk + ij′k = j0k + j⃗k + ij⃗k
′
+ ij′k

0
, (D.88)

with

j0k := −∂⃗ · E⃗k ; j⃗k := ∂0E⃗k − ∂⃗ × H⃗k, (D.89)

j′
0
k := ∂⃗ · H⃗k ; j⃗k

′
:= −∂0H⃗k − ∂⃗ × E⃗k. (D.90)

With the electromagnetic potential A we have:

AS†
k = (A0 + A⃗)(E⃗k − iH⃗k)

= A⃗ · E⃗k + (A0E⃗k + A⃗× H⃗k) + i(A⃗× E⃗k −A0H⃗k)− iA⃗ · H⃗k

= vk + iv′k = v0k + v⃗k + iv⃗k
′ + iv′k

0
, (D.91)

with

v0k := A⃗ · E⃗k ; v⃗k := A0E⃗k + A⃗× H⃗k, (D.92)

v′
0
k := −A⃗ · H⃗k ; v⃗k

′ := −A0H⃗k + A⃗× E⃗k. (D.93)

Similarly with v and Sk we have:

JS†
k = ρvS†

k = ρ(v0 + v⃗)(E⃗k − iH⃗k)

= ρ[⃗v · E⃗k + (v0E⃗k + v⃗ × H⃗k) + i(v⃗ × E⃗k − v0H⃗k)− i⃗v · H⃗k]

= ϕϕ†(ϕσkϕ)
† = ϕϕ†ϕ̂σkϕ

† = ϕρe−iβσkϕ
† = e−iβϕσkϕ

† = (Ω1 − iΩ2)Dk

= Ω1D
0
k +Ω1D⃗k − iΩ2D⃗k − iΩ2D

0
k (D.94)

Thus we obtain:

Ω1

ρ
D0

k = v⃗ · E⃗k ;
Ω1

ρ
D⃗k = v0E⃗k + v⃗ × H⃗k, (D.95)

Ω2

ρ
D0

k = v⃗ · H⃗k ;
Ω2

ρ
D⃗k = v0H⃗k − v⃗ × E⃗k. (D.96)

With the definition (4.29) we have:

S(k) + iS ′
(k) =

∇S†
k

det(ϕ†)
=

Ω1 + iΩ2

ρ2
(jk + ij′k)

= ρ−2[Ω1jk − Ω2j
′
k + i(Ω1j

′
k +Ω2jk)], (D.97)

ρ2S(k) = Ω1jk − Ω2j
′
k, (D.98)

ρ2S ′
(k) = Ω1j

′
k +Ω2jk. (D.99)
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Similarly we have :

A(k) + iA′
(k) =

AS†
k

det(ϕ†)
=

Ω1 + iΩ2

ρ2
(vk + iv′k)

= ρ−2[Ω1vk − Ω2v
′
k + i(Ω1v

′
k +Ω2vk)], (D.100)

ρ2A(k) = Ω1vk − Ω2v
′
k, (D.101)

ρ2A′
(k) = Ω1v

′
k +Ω2vk. (D.102)

D.4.2 Calculation of Γµµν
We start from the definition of Durand’s spin density (4.31), which gives:

τ =
1

2
[(∇ϕ̂)ϕ† − σµϕ̂∂µϕ

†],

2τ = (∇ϕ̂)ϕ† − ∇̇ϕ̂ϕ̇†, (D.103)

where the dots indicate that which we derive. And we have:

∇(ϕ̂ϕ†) = (∇ϕ̂)ϕ† + ∇̇ϕ̂ϕ̇†. (D.104)

Hence by adding we get:

2τ +∇(Ω1 − iΩ2) = 2(∇ϕ̂)ϕ†. (D.105)

With our improved wave equation we have:

(∇ϕ̂)ϕ† = qAϕ̂σ21ϕ
† + e−iβϕmσ21ϕ

†, (D.106)

ϕmσ21ϕ
† = −i(lDR − rDL), (D.107)

(∇ϕ̂)ϕ† = −iqAS†
3 − i

(Ω1

ρ
− i

Ω2

ρ

)
(lDR − rDL). (D.108)

We now let:

τ = τ1 + iτ2 ; τ1 =
1

2
(τ + τ †) ; iτ2 =

1

2
(τ − τ †). (D.109)

With (D.105) and (D.108) we obtain:

∇Ω1 − i∇Ω2 = −2(τ1 + iτ2)− 2iqAS†
3 − 2

(Ω2

ρ
+ i

Ω1

ρ

)
(lDR − rDL)

= −2(τ1 + iτ2)− 2iq(v3 + iv′3)− 2
(Ω2

ρ
+ i

Ω1

ρ

)
(lDR − rDL). (D.110)

This gives:

∇Ω1 = −2τ1 + 2qv′3 − 2
Ω2

ρ
(lDR − rDL), (D.111)

∇Ω2 = 2τ2 + 2qv3 + 2
Ω1

ρ
(lDR − rDL). (D.112)
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Since ρ2 = Ω2
1 +Ω2

2, we have:

ρ∇ρ = Ω1∇Ω1 +Ω2∇Ω2. (D.113)

With our improved wave equation and with (D.111) and (D.112) we get:

ρ∇ρ = Ω1[−2τ1 + 2qv′3 − 2
Ω2

ρ
(lDR − rDL)]

+ Ω2[2τ2 + 2qv3 + 2m
Ω1

ρ
(lDR − rDL)]

= 2(−Ω1τ1 +Ω2τ2) + 2q(Ω1v
′
3 +Ω2v3). (D.114)

And with (D.102) we have:

ρ∇ρ = 2(−Ω1τ1 +Ω2τ2) + 2qρ2A′
(3). (D.115)

With (4.32) we get:

ρ2(T +iT ′) = (τ1+iτ2)(Ω1+iΩ2) = (τ1Ω1−τ2Ω2)+i(τ1Ω2+τ2Ω1). (D.116)

Dividing (D.115) by ρ2 we finally have:

∇(ln ρ) = −2T + 2qA′
(3). (D.117)

With (4.25) we have:

Γ0
0ν = Dµ

ν ∂µ(ln ρ) = Dν · ∇(ln ρ) (D.118)
= Dν · (−2T + 2qA′

(3)), (D.119)

which is (4.39).

D.4.3 Calculation of Γ0
jν and Γj0ν, j = 1, 2, 3

We start from:

Γ0
jν = ρ−2(∂νD

µ
j )D

0

µ = ρ−2[(∂νD
0
j )D

0

0 +

3∑
k=1

(∂νD
k
j )D

0

k]

= ρ−2[(∂νD
0
j )D

0
0 −

3∑
k=1

(∂νD
k
j )D

k
0 ], (D.120)

and similarly:

Γj
0ν = ρ−2(∂νD

µ
0 )D

j

µ = ρ−2[(∂νD
0
0)D

j

0 +

3∑
k=1

(∂νD
k
0 )D

j

k]

= ρ−2[−(∂νD
0
0)D

0
j +

3∑
k=1

(∂νD
k
0 )D

k
j ]. (D.121)
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We thus have:

Γ0
jν − Γj

0ν = ρ−2[∂ν(D
0
0D

0
j )−

3∑
k=1

∂ν(D
k
0D

k
j )] = ρ−2∂ν(D0 ·Dj) = 0,

Γ0
jν = Γj

0ν . (D.122)

We also get:

Γ0
jν = ρ−2


D0

0(D
0
ν∂0 +D1

ν∂1 +D2
ν∂2 +D3

ν∂3)(D
0
j )

−D1
0(D

0
ν∂0 +D1

ν∂1 +D2
ν∂2 +D3

ν∂3)(D
1
j )

−D2
0(D

0
ν∂0 +D1

ν∂1 +D2
ν∂2 +D3

ν∂3)(D
2
j )

−D0
0(D

0
ν∂0 +D1

ν∂1 +D2
ν∂2 +D3

ν∂3)(D
3
j )



= ρ−2


D0

ν(D
0
0∂0D

0
j −D1

0∂0D
1
j −D2

0∂0D
2
j −D3

0∂0D
3
j )

+D1
ν(D

0
0∂1D

0
j −D1

0∂1D
1
j −D2

0∂1D
2
j −D3

0∂1D
3
j )

+D2
ν(D

0
0∂2D

0
j −D1

0∂2D
1
j −D2

0∂2D
2
j −D3

0∂2D
3
j )

+D3
ν(D

0
0∂3D

0
j −D1

0∂3D
1
j −D2

0∂3D
2
j −D3

0∂3D
3
j )


= ρ−2Dµ

ν (D
0
0∂µD

0
j −D1

0∂µD
1
j −D2

0∂µD
2
j −D3

0∂µD
3
j ). (D.123)

Next we obtain:

Γ0
jν = ρ−2Dµ

ν [∂µ(D
0
0D

0
j )− ∂µ(D

1
0D

1
j )− ∂µ(D

2
0D

2
j )− ∂µ(D

3
0D

3
j )]

+ ρ−2Dµ
ν [−D0

j∂µD
0
0 +D1

j∂µD
1
0 +D2

j∂µD
2
0 +D3

j∂µD
3
0] (D.124)

= ρ−2Dµ
ν [∂µ(D0 ·Dj)−D0

j∂µD
0
0 +D1

j∂µD
1
0 +D2

j∂µD
2
0 +D3

j∂µD
3
0]

= ρ−2Dµ
ν [−D0

j∂µD
0
0 +D1

j∂µD
1
0 +D2

j∂µD
2
0 +D3

j∂µD
3
0]. (D.125)

We let:

Γ0
jν = ρ−2Dµ

νXjµ, (D.126)

Xjµ = −D0
j∂µD

0
0 +D1

j∂µD
1
0 +D2

j∂µD
2
0 +D3

j∂µD
3
0. (D.127)

D.4.4 Calculation of Γ0
1ν

We start from:

Γ0
1ν = ρ−2Dµ

νX1µ, (D.128)

X1µ = −D0
1∂µD

0
0 +D1

1∂µD
1
0 +D2

1∂µD
2
0 +D3

1∂µD
3
0. (D.129)

We have:

X1µ = −(−ξ∗1η∗2 − ξ1η2 + ξ∗2η
∗
1 + ξ2η1)∂µ(ξ1ξ

∗
1 + ξ2ξ

∗
2 + η1η

∗
1 + η2η

∗
2)

+ (ξ∗1η
∗
1 − ξ2η2 − ξ∗2η

∗
2 + ξ1η1)∂µ(ξ1ξ

∗
2 + ξ2ξ

∗
1 − η1η

∗
2 − η2η

∗
1)

+ i(−ξ∗1η∗1 + ξ2η2 − ξ∗2η
∗
2 + ξ1η1)∂µi(ξ1ξ

∗
2 − ξ2ξ

∗
1 − η1η

∗
2 + η2η

∗
1)

+ (−ξ∗1η∗2 − ξ1η2 − ξ∗2η
∗
1 − ξ2η1)∂µ(ξ1ξ

∗
1 − ξ2ξ

∗
2 − η1η

∗
1 + η2η

∗
2).
(D.130)
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This gives:

X1µ = 2


−ξ2(η1ξ∗1 + η2ξ

∗
2)∂µξ1 + ξ1(η1ξ

∗
1 + η2ξ

∗
2)∂µξ2

+η2(ξ1η
∗
1 + ξ2η

∗
2)∂µη1 − η1(ξ1η

∗
1 + ξ2η

∗
2)∂µη2

−ξ∗2(ξ1η∗1 + ξ2η
∗
2)∂µξ

∗
1 + ξ∗1(ξ1η

∗
1 + ξ2η

∗
2)∂µξ

∗
2

+η∗2(η1ξ
∗
1 + η2ξ

∗
2)∂µη

∗
1 − η∗1(η1ξ

∗
1 + η2ξ

∗
2)∂µη

∗
2

 , (D.131)

and with (A.84) we get:

X1µ =


−ξ2(Ω1 − iΩ2)∂µξ1 + ξ1(Ω1 − iΩ2)∂µξ2
+η2(Ω1 + iΩ2)∂µη1 − η1(Ω1 + iΩ2)∂µη2
−ξ∗2(Ω1 + iΩ2)∂µξ

∗
1 + ξ∗1(Ω1 + iΩ2)∂µξ

∗
2

+η∗2(Ω1 − iΩ2)∂µη
∗
1 − η∗1(Ω1 − iΩ2)∂µη

∗
2

 . (D.132)

We can thus express it as follows:

X1µ = Ω1Yµ + iΩ2Zµ, (D.133)
Yµ = ξ1∂µξ2 − ξ2∂µξ1 − η1∂µη2 + η2∂µη1

+ ξ∗1∂µξ
∗
2 − ξ∗2∂µξ

∗
1 − η∗1∂µη

∗
2 + η∗2∂µη

∗
1 , (D.134)

Zµ = −ξ1∂µξ2 + ξ2∂µξ1 − η1∂µη2 + η2∂µη1

+ ξ∗1∂µξ
∗
2 − ξ∗2∂µξ

∗
1 + η∗1∂µη

∗
2 − η∗2∂µη

∗
1 . (D.135)

Our improved wave equation is equivalent to the system:

0 = (∇+ ia)η; a := qA+ lv,

0 = (∇̂+ îb)ξ; b := qA+ rv. (D.136)

This is equivalent to the system of partial differential equations:

0 = ∂0η1 − ∂1η2 + i∂2η2 − ∂3η1 + i(a0η1 − a1η2 + ia2η2 − a3η1),

0 = ∂0η2 − ∂1η1 − i∂2η1 + ∂3η2 + i(a0η2 − a1η1 − ia2η1 + a3η2), (D.137)
0 = ∂0ξ1 + ∂1ξ2 − i∂2ξ2 + ∂3ξ1 + i(b0ξ1 + b1ξ2 − ib2ξ2 + b3ξ1),

0 = ∂0ξ2 + ∂1ξ1 + i∂2ξ1 − ∂3ξ2 + i(b0ξ2 + b1ξ1 + ib2ξ1 − b3ξ2).

Given these systems of equations, after simplification we get:

Y0 = −∂1S23
1 − ∂2S

31
1 − ∂3S

12
1

+ 2b1H
1
R + 2b2H

2
R + 2b3H

3
R − 2a1H

1
L − 2a2H

2
L − 2a3H

3
L

= −∂⃗ · E⃗1 + 2(qA⃗+ rv⃗) · H⃗R − 2(qA⃗+ l⃗v) · H⃗L

= −∂⃗ · E⃗1 + 2qA⃗ · E⃗2 + 2mv⃗ · E⃗2 − 2dv⃗ · H⃗1

= j01 + 2qv02 +
2m

ρ
Ω1D

0
2 −

2d

ρ
Ω2D

0
1. (D.138)
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Similarly we have:

Z0 = i∂1S
10
1 + i∂2S

20
1 + i∂3S

30
1

+ 2i(b1E
1
R + b2E

2
R + b3E

3
R)− 2i(a1E

1
L + a2E

2
L + a3E

3
L)

= i(∂⃗ · H⃗1 + 2⃗b · E⃗R − 2a⃗ · E⃗L) (D.139)

= i[∂⃗ · H⃗1 − 2qA⃗ · H⃗2 − 2mv⃗ · H⃗2 − 2dv⃗ · E⃗1].

= i[j′
0
1 + 2qv′

0
2 −

2m

ρ
Ω2D

0
2 −

2d

ρ
Ω1D

0
1]. (D.140)

We hence obtain:

X10 = Ω1Y0 + iΩ2Z0

= Ω1(j
0
1 − 2qv02 − 2m

Ω1

ρ
D0

2 +
2d

ρ
Ω2D

0
1) + iΩ2(ij

′0
1 − 2iqv′

0
2

+ 2im
Ω2

ρ
D0

2 −
2d

ρ
Ω1D

0
1)

= Ω1j
0
1 − Ω2j

′0
1 + 2q(−Ω1v

0
2 +Ω2v

′0
2)− 2m

Ω2
1 +Ω2

2

ρ
D0

2

= ρ2(S0
(1) − 2qA0

(2))− 2mρD0
2.

Again using (D.137) and simplifying, we get:

Y1 = −∂0S23
1 + ∂2S

30
1 − ∂3S

20
1 + 2q(A0E

1
2 −A2H

3
2 +A3H

2
2 )

+ 2m(v0E
1
2 − v2H

3
2 + v3H

2
2 )− 2d(v0H

1
1 + v2E

3
1 − v3E

2
1)

= −j11 + 2qv12 + 2m
Ω1

ρ
D1

2 − 2d
Ω2

ρ
D1

1. (D.141)

Similarly, after simplification (D.137) gives:

Z1 = i[∂0H
1
1 + ∂2E

3
1 − ∂3E

2
1 − 2q(A0H1

2 −A3E2
2 +A2E3

2)

− 2m(v0H
1
2 − v2E3

2 + v3E2
2)− 2d(v0E

1
1 + v2H3

1 − v3H2
1 )

= i
[
− j′

1
1 + 2qv′

1
2 − 2m

Ω2

ρ
D1

2 − 2d
Ω1

ρ
D1

1

]
. (D.142)

With (D.133) and (D.137) we have:

X11 = Ω1Y1 + iΩ2Z1

= Ω1(−j11 + 2qv12 + 2m
Ω1

ρ
D1

2 − 2d
Ω2

ρ
D1

1)

− Ω2(−j′
1
1 + 2qv′

1
2 − 2m

Ω2

ρ
D1

2 − 2d
Ω1

ρ
D1

1)

= −Ω1j
1
1 +Ω2j

′1
1 + 2q(Ω1v

1
2 − Ω2v

′1
2) + 2m

Ω2
1 +Ω2

2

ρ
D1

2

= ρ2(−S1
(1) + 2qA1

(2)) + 2mρD1
2. (D.143)
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Again using (D.137) and simplifying we have:

Y2 = −∂0S31
1 + ∂3S

10
1 − ∂1S

30
1 + 2q(A0E

2
2 −A3H

1
2 +A1H

3
2 )

+ 2m(v0E
2
2 − v3H

1
2 + v1H

3
2 )− 2d(v0H

2
1 + v3E

1
1 − v1E

3
1)

= −j21 + 2qv22 + 2m
Ω1

ρ
D2

2 − 2d
Ω2

ρ
D2

1. (D.144)

Similarly, after simplification (D.137) gives:

Z2 = i[∂0H
2
1 + ∂3E

1
1 − ∂1E

3
1 − 2q(A0H2

2 −A1E3
2 +A3E1

2)

− 2m(v0H
2
2 − v3E1

2 + v1E3
2)− 2d(v0E

2
1 + v3H1

1 − v1H3
1 )

= i[−j′21 + 2qv′
2
2 − 2m

Ω2

ρ
D2

2 − 2d
Ω1

ρ
D2

1]. (D.145)

With (D.133) and (D.137) we have:

X12 = Ω1Y2 + iΩ2Z2

= Ω1(−j21 + 2qv22 + 2m
Ω1

ρ
D2

2 − 2d
Ω2

ρ
D2

1)

− Ω2(−j′
2
1 + 2qv′

2
2 − 2m

Ω2

ρ
D2

2 − 2d
Ω1

ρ
D2

1)

= −Ω1j
2
1 +Ω2j

′2
1 + 2q(Ω1v

2
2 − Ω2v

′2
2) + 2m

Ω2
1 +Ω2

2

ρ
D2

2

= ρ2(−S2
(1) + 2qA2

(2)) + 2mρD2
2. (D.146)

Again using (D.137), and simplifying we have:

Y3 = −∂0S12
1 + ∂1S

10
1 − ∂2S

10
1 + 2q(A0E

3
2 −A1H

2
2 +A2H

1
2 )

+ 2m(v0E
3
2 − v1H

2
2 + v2H

1
2 )− 2d(v0H

3
1 + v1E

2
1 − v2E

1
1)

= −j31 + 2qv32 + 2m
Ω1

ρ
D3

2 − 2d
Ω2

ρ
D3

1. (D.147)

Similarly, and after simplification, (D.137) gives:

Z3 = i[∂0H
3
1 + ∂1E

2
1 − ∂2E

1
1 − 2q(A0H3

2 −A2E1
2 +A1E2

2)

− 2m(v0H
3
2 − v1E2

2 + v2E1
2)− 2d(v0E

3
1 + v1H2

1 − v2H1
1 )

= i[−j′31 + 2qv′
3
2 − 2m

Ω2

ρ
D3

2 − 2d
Ω1

ρ
D3

1]. (D.148)
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With (D.133) and (D.137) we have:

X13 = Ω1Y3 + iΩ2Z3

= Ω1(−j31 + 2qv32 + 2m
Ω1

ρ
D3

2 − 2d
Ω2

ρ
D3

1)

− Ω2(−j′
3
1 + 2qv′

3
2 − 2m

Ω2

ρ
D3

2 − 2d
Ω1

ρ
D3

1)

= −Ω1j
3
1 +Ω2j

′3
1 + 2q(Ω1v

3
2 − Ω2v

′3
2) + 2m

Ω2
1 +Ω2

2

ρ
D3

2

= ρ2(−S3
(1) + 2qA3

(2)) + 2mρD3
2. (D.149)

And we thus get:

Γ0
1ν = ρ−2Dµ

νX1µ = ρ−2[D0
νX10 +

3∑
k=1

Dk
νX1k]

= ρ−2[D0
ν(ρ

2S0
(1) − 2qρ2A0

(2) − 2mρD0
2)

+

3∑
k=1

Dk
ν (−ρ2Sk

(1) + 2qρ2Ak
(2) + 2mρDk

2 )]

= Dν · (S(1) − 2qA(2) − 2
m

ρ
D2)

= Dν · (S(1) − 2qA(2)) + 2mρδ2ν , (D.150)

which is (4.33)

D.4.5 Calculation of Γ0
2ν

We start from:

Γ0
2ν = ρ−2Dµ

νX2µ, (D.151)

X2µ = −D0
2∂µD

0
0 +D1

2∂µD
1
0 +D2

2∂µD
2
0 +D3

2∂µD
3
0. (D.152)

We have:

X2µ = −i(−ξ∗1η∗2 + ξ1η2 + ξ∗2η
∗
1 − ξ2η1)∂µ(ξ1ξ

∗
1 + ξ2ξ

∗
2 + η1η

∗
1 + η2η

∗
2)

+ i(ξ∗1η
∗
1 + ξ2η2 − ξ∗2η

∗
2 − ξ1η1)∂µ(ξ1ξ

∗
2 + ξ2ξ

∗
1 − η1η

∗
2 − η2η

∗
1)

+ (ξ∗1η
∗
1 + ξ2η2 + ξ∗2η

∗
2 + ξ1η1)∂µi(ξ1ξ

∗
2 − ξ2ξ

∗
1 − η1η

∗
2 + η2η

∗
1)

+ i(−ξ∗1η∗2 + ξ1η2 − ξ∗2η
∗
1 + ξ2η1)∂µ(ξ1ξ

∗
1 − ξ2ξ

∗
2 − η1η

∗
1 + η2η

∗
2),
(D.153)

which with (A.84) gives:

X2µ =


ξ2(iΩ1 +Ω2)∂µξ1 − ξ1(iΩ1 +Ω2)∂µξ2

−η2(iΩ1 − Ω2)∂µη1 + η1(iΩ1 − Ω2)∂µη2
−ξ∗2(iΩ1 − Ω2)∂µξ

∗
1 + ξ∗1(iΩ1 − Ω2)∂µξ

∗
2

+η∗2(iΩ1 +Ω2)∂µη
∗
1 − η∗1(iΩ1 +Ω2)∂µη

∗
2

 . (D.154)
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We may then express it as:

X2µ = iΩ1Lµ +Ω2Mµ, (D.155)
Lµ = −ξ1∂µξ2 + ξ2∂µξ1 + η1∂µη2 − η2∂µη1

+ ξ∗1∂µξ
∗
2 − ξ∗2∂µξ

∗
1 − η∗1∂µη

∗
2 + η∗2∂µη

∗
1 , (D.156)

Mµ = −ξ1∂µξ2 + ξ2∂µξ1 − η1∂µη2 + η2∂µη1

− ξ∗1∂µξ
∗
2 + ξ∗2∂µξ

∗
1 − η∗1∂µη

∗
2 + η∗2∂µη

∗
1 . (D.157)

Again with (D.137) and after simplification we get:

L0 = i[∂1E
1
2 + ∂2E

2
2 + ∂3E

3
2 − 2⃗b · E⃗R − 2a⃗ · E⃗L

= i[∂⃗ · E⃗2 − 2(qA⃗+ rv⃗) · E⃗R − 2(qA⃗+ l⃗v) · E⃗L]

= i(−j02 − 2qv01 − 2m
Ω1

ρ
D0

1 − 2d
Ω2

ρ
D0

2). (D.158)

After simplification the equation (D.157) yields:

M0 = −∂1H1
2 − ∂2H

2
2 − ∂3H

3
2 + 2⃗b · H⃗R + 2a⃗ · H⃗L

= −∂⃗ · H⃗2 + 2(qA⃗+ rv⃗) · H⃗R + 2(qA⃗+ l⃗v) · H⃗L]

= −j′02 − 2qv′
0
1 + 2m

Ω2

ρ
D0

1 − 2d
Ω1

ρ
D0

2). (D.159)

With (D.155) and (D.158) we obtain:

X20 = iΩ1L0 +Ω2M0

= −Ω1(−j02 − 2qv01 − 2m
Ω1

ρ
D0

1 − 2d
Ω2

ρ
D0

2)

+ Ω2(−j′
0
2 − 2qv′

0
1 + 2m

Ω2

ρ
D0

1 − 2d
Ω1

ρ
D0

2)

= (Ω1j
0
2 − Ω2j

′0
2) + 2q(Ω1v

0
1 − Ω2v

′0
1) + 2m

Ω2
1 +Ω2

2

ρ
D0

1

= ρ2(S0
(2) + 2qA0

(1)) + 2mρD0
1. (D.160)

As usual with (D.137) and after simplification we have:

L1 = i[∂0(H
1
R −H1

L) + ∂2(E
3
R − E3

L)− ∂3(E
2
R − E2

L)

+ 2b0E
1
R + 2a0E

1
L − 2b2H

3
R − 2a2H

3
L + 2b3H

2
R + 2a3H

2
L]

= i
(
j12 + 2qv11 + 2m

Ω1

ρ
D1

1 + 2d
Ω2

ρ
D1

2

)
. (D.161)

With (D.137) and after simplification we get:

M1 = ∂0(E
1
R − E1

L) + ∂2(−H3
R +H3

L) + ∂3(H
2
R −H2

L)

+ 2(−b0H1
R − b2E

3
R + b3E

2
R) + 2(−a0H1

L − a2E
3
L + a3E

2
L)

= j′
1
2 + 2qv′

1
1 − 2m

Ω2

ρ
D1

1 + 2d
Ω1

ρ
D1

2. (D.162)
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With (D.155), (D.161) and (D.162) we have:

X21 = iΩ1L1 +Ω2M1

= −Ω1(j
1
2 + 2qv11 + 2m

Ω1

ρ
D1

1 + 2d
Ω2

ρ
D1

2)

+ Ω2(j
′1
2 + 2qv′

1
1 − 2m

Ω2

ρ
D1

1 + 2d
Ω1

ρ
D1

2)

= −Ω1j
1
2 +Ω2j

′1
2 + 2q(−Ω1v

1
1 +Ω2v

′1
1)− 2m

Ω2
1 +Ω2

2

ρ
D1

1

= ρ2(−S1
(2) − 2qA1

(1)) + 2mρD1
1. (D.163)

Again with (D.137) and after simplification we obtain:

L2 = i[∂0(H
2
R −H2

L) + ∂3(E
1
R − E1

L)− ∂1(E
3
R − E3

L)

+ 2b0E
2
R + 2a0E

2
L − 2b3H

1
R − 2a3H

1
L + 2b1H

3
R + 2a1H

3
L]

= i(j22 + 2qv21 + 2m
Ω1

ρ
D2

1 + 2d
Ω2

ρ
D2

2). (D.164)

Similarly with (D.137) and simplifying we get:

M2 = ∂0(E
2
R − E2

L) + ∂3(−H1
R +H1

L) + ∂1(H
3
R −H3

L)

+ 2(−b0H2
R − b3E

1
R + b1E

3
R) + 2(−a0H2

L − a3E
1
L + a1E

3
L)

= j′
2
2 + 2qv′

2
1 − 2m

Ω2

ρ
D2

1. (D.165)

With (D.155), (D.164) and (D.165) we have:

X22 = iΩ1L2 +Ω2M2

= −Ω1

(
j22 + 2qv21 + 2m

Ω1

ρ
D2

1 + 2d
Ω2

ρ
D2

2

)
+Ω2

(
j′

2
2 + 2qv′

2
1 − 2m

Ω2

ρ
D2

1 + 2d
Ω1

ρ
D2

2

)
= −Ω1j

2
2 +Ω2j

′2
2 + 2q(−Ω1v

2
1 +Ω2v

′2
1)− 2m

Ω2
1 +Ω2

2

ρ
D2

1

= ρ2(−S2
(2) − 2qA2

(1)) + 2mρD2
1. (D.166)

Again with (D.137) and after simplification we get:

L3 = i[∂0(H
3
R −H3

L) + ∂2(E
2
R − E2

L)− ∂2(E
1
R − E1

L)

+ 2b0E
3
R + 2a0E

3
L − 2b1H

2
R − 2a1H

2
L + 2b2H

1
R + 2a2H

1
L]

= i
(
j32 + 2qv31 + 2m

Ω1

ρ
D3

1 + 2d
Ω2

ρ
D3

2

)
. (D.167)
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Similarly with (D.137) and simplifying we have:

M3 = ∂0(E
3
R − E3

L) + ∂1(−H2
R +H2

L) + ∂2(H
1
R −H1

L)

+ 2(−b0H3
R − b1D

2
R + b2E

1
R) + 2(−a0H3

L − a1E
2
L + a2E

1
L)

= j′
3
2 + 2qv′

3
1 − 2m

Ω2

ρ
D3

1. (D.168)

With (D.155), (D.167) and (D.168) we obtain:

X23 = iΩ1L3 +Ω2M3

= −Ω1

(
j32 + 2qv31 + 2m

Ω1

ρ
D3

1 + 2d
Ω2

ρ
D3

2

)
+Ω2

(
j′

3
2 + 2qv′

3
1 − 2m

Ω2

ρ
D3

1 + 2d
Ω1

ρ
D3

2

)
= −Ω1j

3
2 +Ω2j

′3
2 + 2q(−Ω1v

3
1 +Ω2v

′3
1)− 2m

Ω2
1 +Ω2

2

ρ
D3

1

= ρ2(−S3
(2) − 2qA3

(1)) + 2mρD3
1. (D.169)

And we thus have:

Γ0
2ν = ρ−2Dµ

νX2µ = ρ−2
[
D0

νX20 +

3∑
k=1

Dk
νX2k

]
= ρ−2[D0

ν(ρ
2S0

(2) + 2qρ2A0
(1) + 2mρD0

1)

+

3∑
k=1

Dk
ν (−ρ2Sk

(2) − 2qρ2Ak
(1) − 2mρDk

1 )]

= Dν ·
(
S(2) + 2qA(1) + 2

m

ρ
D1

)
= Dν · (S(2) + 2qA(1))− 2mρδ1ν , (D.170)

which is (4.34),

D.4.6 Calculation of Γ0
3ν

We begin with:

Γ0
3ν = ρ−2Dµ

νX3µ, (D.171)

X3µ = −D0
3∂µD

0
0 +D1

3∂µD
1
0 +D2

3∂µD
2
0 +D3

3∂µD
3
0. (D.172)

We have:

X3µ = −(ξ1ξ
∗
1 + ξ2ξ

∗
2 − η1η

∗
1 − η2η

∗
2)∂µ(ξ1ξ

∗
1 + ξ2ξ

∗
2 + η1η

∗
1 + η2η

∗
2)

+ (ξ1ξ
∗
2 + ξ2ξ

∗
1 + η1η

∗
2 + η2η

∗
1)∂µ(ξ1ξ

∗
2 + ξ2ξ

∗
1 − η1η

∗
2 − η2η

∗
1)

+ i(ξ1ξ
∗
2 − ξ2ξ

∗
1 + η1η

∗
2 − η2η

∗
1)∂µi(ξ1ξ

∗
2 − ξ2ξ

∗
1 − η1η

∗
2 + η2η

∗
1)

+ (ξ1ξ
∗
1 − ξ2ξ

∗
2 + η1η

∗
1 − η2η

∗
2)∂µ(ξ1ξ

∗
1 − ξ2ξ

∗
2 − η1η

∗
1 + η2η

∗
2), (D.173)
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which by (A.84) gives:

X3µ =


η∗1(Ω1 − iΩ2)∂µξ1 + η∗2(Ω1 − iΩ2)∂µξ2
−ξ∗1(Ω1 + iΩ2)∂µη1 − ξ∗2(Ω1 + iΩ2)∂µη2
+η1(Ω1 + iΩ2)∂µξ

∗
1 + η2(Ω1 + iΩ2)∂µξ

∗
2

−ξ1(Ω1 − iΩ2)∂µη
∗
1 − ξ2(Ω1 − iΩ2)∂µη

∗
2

 . (D.174)

We let:

X3µ = Ω1Nµ + iΩ2Pµ, (D.175)
Nµ = η∗1∂µξ1 + η∗2∂µξ2 − ξ∗1∂µη1 − ξ∗2∂µη2

+ η1∂µξ
∗
1 + η2∂µξ

∗
2 − ξ1∂µη

∗
1 − ξ2∂µη

∗
2 , (D.176)

Pµ = −η∗1∂µξ1 − η∗2∂µξ2 − ξ∗1∂µη1 − ξ∗2∂µη2

+ η1∂µξ
∗
1 + η2∂µξ

∗
2 + ξ1∂µη

∗
1 + ξ2∂µη

∗
2 . (D.177)

With (D.137) and after simplification we get:

N0 = −∂1E1
3 − ∂2E

2
3 − ∂3E

3
3 + (b0 + a0)Ω2

+ (b1 − a1)H
1
3 + (b2 − a2)H

2
3 + (b3 − a3)H

3
3

= j03 + 2Ω2

(
qA0 +mv0 +

d

ρ
D0

3

)
. (D.178)

Again with (D.137) and after simplification we get:

P0 = ∂1(iH
1
3 ) + ∂2(iH

2
3 ) + ∂3(iH

3
3 ) + i(b0 + a0)Ω1

+ i(b1 − a1)E
1
3 + i(b2 − a2)E

2
3 + i(b3 − a3)E

3
3

= i
[
j′

0
3 + 2Ω1

(
qA0 +mv0 +

d

ρ
D0

3

)]
. (D.179)

In light of (D.175), (D.178) and (D.179) taken together we get:

X30 = Ω1N0 +Ω2iP0

= Ω1

[
j03 + 2Ω2

(
qA0 +mv0 +

d

ρ
D0

3

)]
− Ω2

[
j′

0
3 + 2Ω1

(
qA0 +mv0 +

d

ρ
D0

3

)]
= Ω1j

0
3 − Ω2j

′0
3

= ρ2S0
(3). (D.180)

As always with (D.137) and after simplification we get:

N1 = −∂0E1
3 + ∂2H

3
3 − ∂3H

2
3

+ (b1 + a1)Ω2 + (b0 − a0)H
1
3 + (b2 − a2)E

3
3 + (b3 − a3)(−E2

3)

= −j13 − 2Ω2

(
qA1 +

m

ρ
D1

0 +
d

ρ
D1

3

)
. (D.181)
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With (D.137) and after simplification we get:

P1 = i(∂0H
1
3 + ∂2E

3
3 − ∂3E

2
3 + (b1 + a1)E

1
3

+ (b0 − a0)E
1
3 − (b2 − a2)H

3
3 + (b3 − a3)H

2
3

= i
[
− j′

1
3 − 2Ω1

(
qA1 +

m

ρ
D1

0 +
d

ρ
D1

3

)]
. (D.182)

With (D.175), (D.181) and (D.182) we get:

X31 = Ω1N1 +Ω2iP1

= Ω1

[
− j13 − 2Ω2

(
qA1 +

m

ρ
D1

0 +
d

ρ
D1

3

)]
− Ω2

[
− j′

1
3 − 2Ω1

(
qA1 +

m

ρ
D1

0 +
d

ρ
D1

3

)]
= −Ω1j

1
3 +Ω2j

′1
3 = −ρ2S1

(3). (D.183)

Again with (D.137) we get:

N2 = −∂0E2
3 − ∂1H

3
3 + ∂3H

1
3 + (b2 + a2)Ω2

+ (b0 − a0)H
2
3 + (b3 − a3)E

1
3 − (b1 − a1)E

2
3

= −j23 − 2Ω2

(
qA2 +

m

ρ
D2

0 +
d

ρ
D2

3

)
. (D.184)

As usual with (D.137) we obtain:

P2 = i(∂0H
2
3 + ∂3E

1
3 − ∂1E

3
3 + (b2 + a2)E

2
3

+ (b0 − a0)E
2
3 − (b3 − a3)H

1
3 + (b1 − a1)H

3
3

= i
[
− j′

2
3 − 2Ω1

(
qA2 +

m

ρ
D2

0 +
d

ρ
D2

3

)]
. (D.185)

With (D.175), (D.184) and (D.185) we have:

X32 = Ω1N2 +Ω2iP2

= Ω1

[
− j23 − 2Ω2

(
qA2 +

m

ρ
D2

0 +
d

ρ
D2

3

)]
− Ω2

[
− j′

2
3 − 2Ω1

(
qA2 +

m

ρ
D2

0 +
d

ρ
D2

3

)]
= −Ω1j

2
3 +Ω2j

′2
3 = −ρ2S2

(3). (D.186)

Always with (D.137) we get:

N3 = −∂0E3
3 − ∂2H

1
3 + ∂1H

2
3 + (b3 + a3)Ω2

+ (b0 − a0)H
3
3 + (b1 − a1)E

2
3 − (b2 − a2)E

3
3

= −j33 − 2Ω2(qA
3 +

m

ρ
D3

0 +
d

ρ
D3

3). (D.187)
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With (D.137) and after simplification we have:

P3 = i(∂0H
3
3 + ∂1E

2
3 − ∂2E

1
3 + (b3 + a3)E

3
3

+ (b0 − a0)E
3
3 − (b1 − a1)H

2
3 + (b2 − a2)H

1
3

= i
[
− j′

3
3 − 2Ω1

(
qA3 +

m

ρ
D3

0 +
d

ρ
D3

3

)]
. (D.188)

Hence with (D.175), (D.187) and (D.188) we get:

X33 = Ω1N3 +Ω2iP3

= Ω1

[
− j33 − 2Ω2

(
qA3 +

m

ρ
D3

0 +
d

ρ
D3

3

)]
− Ω2

[
− j′

3
3 − 2Ω1

(
qA3 +

m

ρ
D3

0 +
d

ρ
D3

3

)]
= −Ω1j

3
3 +Ω2j

′3
3 = −ρ2S3

(3). (D.189)

And we thus have:

Γ0
3ν = ρ−2Dµ

νX3µ = ρ−2
[
D0

νX30 +

3∑
k=1

Dk
νX3k

]
= ρ−2

[
D0

ν

(
ρ2S0

(3) +

3∑
k=1

Dk
ν (−ρ2Sk

(3))
)]

= Dν · S(3), (D.190)

which is (4.35).

D.4.7 Calculation of Γklν

We must calculate these symbols for k = 1, 2, 3 ; l = 1, 2, 3 and l ̸= k.
We start from:

Γk
lν = ρ−2(∂νD

µ
l )D

k

µ

= ρ−2
[
(∂νD

0
l )D

k

0 +

3∑
n=1

(∂νD
n
l )D

k

n

]
= ρ−2

[
(∂νD

0
l )(−D0

k) +

3∑
n=1

(∂νD
n
l )D

n
k

]
, (D.191)
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and similarly:

Γl
kν = ρ−2(∂νD

µ
k )D

l

µ

= ρ−2
[
(∂νD

0
k)D

l

0 +

3∑
n=1

(∂νD
n
k )D

l

n

]
= ρ−2

[
(∂νD

0
k)(−D0

l ) +

3∑
n=1

(∂νD
n
k )D

n
l

]
. (D.192)

We thus get:

Γk
lν + Γl

kν = ρ−2
[
− ∂ν(D

0
kD

0
l ) +

3∑
n=1

∂ν(D
n
kD

n
l )
]
,

= −ρ−2∂ν(Dk ·Dl) = 0 (D.193)

Γl
kν = −Γk

lν . (D.194)

The calculation of Γ1
2ν , Γ2

3ν and Γ3
1ν is thus sufficient. Moreover we have:

ρ2Γk
lν =


−D0

k(D
0
ν∂0 +D1

ν∂1 +D2
ν∂2 +D3

ν∂3)(D
0
l )

+D1
k(D

0
ν∂0 +D1

ν∂1 +D2
ν∂2 +D3

ν∂3)(D
1
l )

+D2
k(D

0
ν∂0 +D1

ν∂1 +D2
ν∂2 +D3

ν∂3)(D
2
l )

+D3
k(D

0
ν∂0 +D1

ν∂1 +D2
ν∂2 +D3

ν∂3)(D
3
l )



=


D0

ν(−D0
k∂0D

0
l +D1

k∂0D
1
l +D2

k∂0D
2
l +D3

k∂0D
3
l )

+D1
ν(−D0

k∂1D
0
l +D1

k∂1D
1
l +D2

k∂1D
2
l +D3

k∂1D
3
l )

+D2
ν(−D0

k∂2D
0
l +D1

k∂2D
1
l +D2

k∂2D
2
l +D3

k∂2D
3
l )

+D3
ν(−D0

k∂3D
0
l +D1

k∂3D
1
l +D2

k∂3D
2
l +D3

k∂3D
3
l )


= Dµ

ν (−D0
k∂µD

0
l +D1

k∂µD
1
l −D2

k∂µD
2
l +D3

k∂µD
3
l ). (D.195)

Calculation of Γ1
2ν

Given that:

ρ2Γ1
2ν = Dµ

ν (iWµ),

iWµ = −D0
1∂µD

0
2 +D1

1∂µD
1
2 −D2

1∂µD
2
2 +D3

1∂µD
3
2 (D.196)

= −(−ξ∗1η∗2 − ξ1η2 + ξ∗2η
∗
1 + ξ2η1)∂µi(−ξ∗1η∗2 + ξ1η2 + ξ∗2η

∗
1 − ξ2η1)

+ (ξ∗1η
∗
1 − ξ2η2 − ξ∗2η

∗
2 + ξ1η1)∂µi(ξ

∗
1η

∗
1 + ξ2η2 − ξ∗2η

∗
2 − ξ1η1)

+ i(−ξ∗1η∗1 + ξ2η2 − ξ∗2η
∗
2 + ξ1η1)∂µ(ξ

∗
1η

∗
1 + ξ2η2 + ξ∗2η

∗
2 + ξ1η1)

+ (−ξ∗1η∗2 − ξ1η2 − ξ∗2η
∗
1 − ξ2η1)∂µi(−ξ∗1η∗2 + ξ1η2 − ξ∗2η

∗
1 + ξ2η1).
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We thus have:

1

2
Wµ = (∂µξ1)(−η∗1)(η2ξ∗2 + η1ξ

∗
1) + (∂µξ2)(−η∗2)(η1ξ∗1 + η2ξ

∗
2)

+ (∂µη1)(−ξ∗1)(ξ2η∗2 + ξ1η
∗
1) + (∂µη2)(−ξ∗2)(ξ1η∗1 + ξ2η

∗
2)

+ (∂µξ
∗
1)η1(ξ2η

∗
2 + ξ1η

∗
1) + (∂µξ

∗
2)η2(ξ1η

∗
1 + ξ2η

∗
2)

+ (∂µη
∗
1)ξ1(η2ξ

∗
2 + η1ξ

∗
1) + (∂µη

∗
2)ξ2(η1ξ

∗
1 + η2ξ

∗
2), (D.197)

which gives with equations (D.176) and(D.177) calculating Nµ and Pµ:

iWµ = Ω1iPµ − Ω2Nµ. (D.198)

We may thus use the results of D.4.6 and we directly obtain:

ρ2Γ1
2ν = D0

ν

[
− ρ2S ′0

(3) − 2ρ2
(
qA0 +

m

ρ
D0

0 +
d

ρ
D0

3

)]
+Dk

ν

[
ρ2S ′k

(3) + 2ρ2
(
qAk +

m

ρ
Dk

0 +
d

ρ
Dk

3

)]
Γ1
2ν = −Dν · (S ′

(3) + 2qA)− 2mρδ0ν + 2dρδ3ν . (D.199)

which gives (4.38).

Calculation of Γ2
3ν

Similarly we have:

ρ2Γ2
3ν = Dµ

νRµ,

Rµ = −D0
2∂µD

0
3 +D1

2∂µD
1
3 +D2

2∂µD
2
3 +D3

2∂µD
3
3 (D.200)

= −i(−ξ∗1η∗2 + ξ1η2 + ξ∗2η
∗
1 − ξ2η1)∂µ(ξ1ξ

∗
1 + ξ2ξ

∗
2 − η1η

∗
1 − η2η

∗
2)

+ i(ξ∗1η
∗
1 + ξ2η2 − ξ∗2η

∗
2 − ξ1η1)∂µ(ξ1ξ

∗
2 + ξ2ξ

∗
1 + η1η

∗
2 + η2η

∗
1)

+ (ξ∗1η
∗
1 + ξ2η2 + ξ∗2η

∗
2 + ξ1η1)∂µi(ξ1ξ

∗
2 − ξ2ξ

∗
1 + η1η

∗
2 − η2η

∗
1)

+ i(−ξ∗1η∗2 + ξ1η2 − ξ∗2η
∗
1 + ξ2η1)∂µ(ξ1ξ

∗
1 − ξ2ξ

∗
2 + η1η

∗
1 − η2η

∗
2).

(D.201)

Using always (D.137) we have:

Rµ = i


ξ2(∂µξ1)(Ω1 − iΩ2)− ξ1(∂µξ2)(Ω1 − iΩ2)

+η2(∂µη1)(Ω1 + iΩ2)− η1(∂µη2)(Ω1 + iΩ2)
−ξ∗2(∂µξ∗1)(Ω1 + iΩ2) + ξ∗1(∂µξ

∗
2)(Ω1 + iΩ2)

−η∗2(∂µη∗1)(Ω1 − iΩ2) + η∗1(∂µη
∗
2)(Ω1 − iΩ2)

 . (D.202)

With equations (D.134) and (D.135) calculating Yµ and Zµ we deduce:

Rµ = −Ω2Yµ +Ω1iZµ. (D.203)
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We may then use the results in D.4.4 and we directly obtain:

ρ2Γ2
3ν = Dµ

ν [−(Ω2j1µ +Ω1j1µ − 2q(Ω2v
µ
2 +Ω1v

′µ
2 )

− 2m
Ω1Ω2 − Ω2Ω1

ρ
Dµ

2 + 2d
Ω2

1 +Ω2
2

ρ
Dµ

1 ]

Γ2
3ν = −Dν · (S ′

(1) + 2qA′
(2))− 2dρδ1ν . (D.204)

This is (4.36).

Calculation of Γ3
1ν

We finally have:

ρ2Γ3
1ν = Dµ

ν (Qµ),

Qµ = −D0
3∂µD

0
1 +D1

3∂µD
1
1 +D2

3∂µD
2
1 +D3

3∂µD
3
1 (D.205)

= −(ξ1ξ
∗
1 + ξ2ξ

∗
2 − η1η

∗
1 − η2η

∗
2)∂µ(−ξ∗1η∗2 − ξ1η2 + ξ∗2η

∗
1 + ξ2η1)

+ (ξ1ξ
∗
2 + ξ2ξ

∗
1 + η1η

∗
2 + η2η

∗
1)∂µ(ξ

∗
1η

∗
1 − ξ2η2 − ξ∗2η

∗
2 + ξ1η1)

+ i2(ξ1ξ
∗
2 − ξ2ξ

∗
1 + η1η

∗
2 − η2η

∗
1)∂µ(−ξ∗1η∗1 + ξ2η2 − ξ∗2η

∗
2 + ξ1η1)

+ (ξ1ξ
∗
1 − ξ2ξ

∗
2 + η1η

∗
1 − η2η

∗
2)∂µ(−ξ∗1η∗2 − ξ1η2 − ξ∗2η

∗
1 − ξ2η1).

(D.206)

We get with (D.156) and (D.157) calculating Lµ and Mµ:

Qµ = Ω1Mµ − iΩ2Lµ. (D.207)

We may thus use the results of D.4.5 and we directly get:

ρ2Γ3
1ν = D0

ν [Ω2(−j02 − 2qv01 − 2m
Ω1

ρ
D0

1 − 2d
Ω2

ρ
D0

2)

+ Ω1(−j′
0
2 − 2qv′

0
1 + 2m

Ω2

ρ
D0

1 − 2d
Ω1

ρ
D0

2)]

+

3∑
k=1

Dk
ν [Ω2(j

k
2 + 2qvk1 + 2m

Ω1

ρ
Dk

2 + 2d
Ω2

ρ
Dk

2) (D.208)

+Ω1(j
′k
2 + 2qv′

k
1 − 2m

Ω2

ρ
Dk

1 + 2d
Ω1

ρ
Dk

2))].

This gives:
Γ3
1ν = Dν · (−S ′

(2) − 2qA′
(1)) + 2dρδ2ν , (D.209)

which is (4.37), end of this long and tedious calculation.
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